Suppr超能文献

用于实时磁共振成像应用的基于光纤布拉格光栅的声光传感器的灵敏度和相位响应。

Sensitivity and phase response of FBG based acousto-optic sensors for real-time MRI applications.

作者信息

Yaras Yusuf Samet, Yildirim Dursun Korel, Kocaturk Ozgur, Degertekin F Levent

机构信息

George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, 771 Ferst Dr NW, Atlanta, GA 30332, USA.

National Institutes of Health, National Heart Lung and Blood Institute, 10 Center Dr, Bethesda, MD 20892, USA.

出版信息

OSA Contin. 2020 Mar 15;3(3):447-458. doi: 10.1364/osac.385969.

Abstract

Fiber Bragg grating (FBG) based sensors have recently been introduced to the field of magnetic resonance imaging (MRI). Real-time MRI applications demand highly amplitude and phase sensitive MRI compatible sensors. Thus, a model and detailed analysis of FBG based ultrasound detection are required for designing better performing sensors. A hybrid FBG model incorporating numerical and FEA methods was developed and used for sensitivity and linearity analysis. The transfer matrix method was used for the modeling of optical modulation whereas FEA was used for pressure field calculations within the grating. The model was verified through reflection spectrum and acoustic pressure sensitivity testing of two -phase shifted FBGs in a side slope read-out configuration. The sensitivity curves with respect to the operation point on the side slope was characterized in terms of amplitude and phase, and nonlinearity of the phase response has been quantified. Lastly, the impact of phase linearity of the FBG based acousto-optic sensor was tested under MRI when the sensor was used as a position marker and an analog phase shifter based solution was demonstrated.

摘要

基于光纤布拉格光栅(FBG)的传感器最近已被引入磁共振成像(MRI)领域。实时MRI应用需要高度灵敏的幅度和相位MRI兼容传感器。因此,为了设计性能更好的传感器,需要对基于FBG的超声检测进行建模和详细分析。开发了一种结合数值方法和有限元分析(FEA)方法的混合FBG模型,并将其用于灵敏度和线性度分析。传输矩阵法用于光调制建模,而有限元分析用于计算光栅内的压力场。通过对处于边坡读出配置的两相移FBG进行反射光谱和声压灵敏度测试,对该模型进行了验证。根据幅度和相位对边坡上操作点的灵敏度曲线进行了表征,并对相位响应的非线性进行了量化。最后,当该传感器用作位置标记时,在MRI条件下测试了基于FBG的声光传感器的相位线性度的影响,并展示了一种基于模拟移相器的解决方案。

相似文献

2
Real-time device tracking under MRI using an acousto-optic active marker.
Magn Reson Med. 2021 May;85(5):2904-2914. doi: 10.1002/mrm.28625. Epub 2020 Dec 21.
3
Acousto-Optic Catheter Tracking Sensor for Interventional MRI Procedures.
IEEE Trans Biomed Eng. 2019 Apr;66(4):1148-1154. doi: 10.1109/TBME.2018.2868830. Epub 2018 Sep 5.
4
Review of Chirped Fiber Bragg Grating (CFBG) Fiber-Optic Sensors and Their Applications.
Sensors (Basel). 2018 Jul 4;18(7):2147. doi: 10.3390/s18072147.
6
Using Custom Fiber Bragg Grating-Based Sensors to Monitor Artificial Landslides.
Sensors (Basel). 2016 Sep 2;16(9):1417. doi: 10.3390/s16091417.
7
Spectral Verification of the Mechanisms behind FBG-Based Ultrasonic Guided Wave Detection.
Sensors (Basel). 2020 Nov 17;20(22):6571. doi: 10.3390/s20226571.
8
A Novel Fabry-Pérot Optical Sensor for Guided Wave Signal Acquisition.
Sensors (Basel). 2020 Mar 19;20(6):1728. doi: 10.3390/s20061728.
9
Acousto-optic-based time domain electric field sensor for magnetic resonance imaging applications.
Opt Eng. 2024 Mar;63(3). doi: 10.1117/1.oe.63.3.031008. Epub 2024 Jan 20.

引用本文的文献

1
Antenna-Driven Optical Fiber-Based Acousto-Optic Modulation Devices: Electro-Mechanical Model and Experimental Validation.
Sens Actuators A Phys. 2025 Jun 1;387. doi: 10.1016/j.sna.2025.116327. Epub 2025 Feb 27.
2
Acousto-optic-based time domain electric field sensor for magnetic resonance imaging applications.
Opt Eng. 2024 Mar;63(3). doi: 10.1117/1.oe.63.3.031008. Epub 2024 Jan 20.
4
An interventional MRI guidewire combining profile and tip conspicuity for catheterization at 0.55T.
Magn Reson Med. 2023 Feb;89(2):845-858. doi: 10.1002/mrm.29466. Epub 2022 Oct 5.
5
A 20-gauge active needle design with thin-film printed circuitry for interventional MRI at 0.55T.
Magn Reson Med. 2021 Sep;86(3):1786-1801. doi: 10.1002/mrm.28804. Epub 2021 Apr 16.
6
Real-time device tracking under MRI using an acousto-optic active marker.
Magn Reson Med. 2021 May;85(5):2904-2914. doi: 10.1002/mrm.28625. Epub 2020 Dec 21.

本文引用的文献

1
Acousto-Optic Catheter Tracking Sensor for Interventional MRI Procedures.
IEEE Trans Biomed Eng. 2019 Apr;66(4):1148-1154. doi: 10.1109/TBME.2018.2868830. Epub 2018 Sep 5.
2
Real-Time Estimation of 3-D Needle Shape and Deflection for MRI-Guided Interventions.
IEEE ASME Trans Mechatron. 2010 Dec;15(6):906-915. doi: 10.1109/TMECH.2010.2080360.
3
Intensity-modulated microbend fiber optic sensor for respiratory monitoring and gating during MRI.
IEEE Trans Biomed Eng. 2013 Sep;60(9):2655-62. doi: 10.1109/TBME.2013.2262150. Epub 2013 May 13.
4
High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system.
Opt Express. 2012 Dec 17;20(27):28353-62. doi: 10.1364/OE.20.028353.
5
High-sensitivity compact ultrasonic detector based on a pi-phase-shifted fiber Bragg grating.
Opt Lett. 2011 May 15;36(10):1833-5. doi: 10.1364/OL.36.001833.
7
Transduction mechanisms of the Fabry-Perot polymer film sensing concept for wideband ultrasound detection.
IEEE Trans Ultrason Ferroelectr Freq Control. 1999;46(6):1575-82. doi: 10.1109/58.808883.
8
Fiber Fabry-Perot sensors for detection of partial discharges in power transformers.
Appl Opt. 2003 Jun 1;42(16):3241-50. doi: 10.1364/ao.42.003241.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验