Wan Bingxin, Dou Huanglin, Zhao Xiaoli, Wang Jiahe, Zhao Wanyu, Guo Min, Zhang Yijie, Li Jinjin, Ma Zi-Feng, Yang Xiaowei
School of Materials Science and Engineering, Interdisciplinary Materials Research Center, Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Shanghai 201804, China.
College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, China.
ACS Appl Mater Interfaces. 2020 Jun 24;12(25):28298-28305. doi: 10.1021/acsami.0c07213. Epub 2020 Jun 12.
Magnesium ion batteries are a promising alternative of the lithium counterpart; however, the poorly ion-conductive passivation layer on Mg metal makes plating/stripping difficult. In addition to the generally recognized chemical passivation, the interphase is dynamically degraded by electrochemical side reactions. Especially under high current densities, the interphase thickens, exacerbating the electrode degradation. Herein, we adopt 3D MgBi scaffolds for Mg metal, of which the high surface area reduces the effective current density to avoid continuous electrolyte decomposition and the good Mg affinity homogenizes nucleation. The greatly alleviated passivation layer could serve as a stable solid/electrolyte interface instead. The symmetric cell delivers a low overpotential of 0.21 and 0.50 V at a current density of 0.1 and 4 mA cm, respectively, and a superior cycling performance over 300 cycles at 0.5 mA cm in a noncorrosive conventional electrolyte. This work proves that the control of dynamic passivation can enable high-power density Mg metal anodes.
镁离子电池是锂基电池很有前景的替代品;然而,镁金属上离子传导性较差的钝化层使得电镀/脱镀变得困难。除了普遍认可的化学钝化外,界面还会因电化学反应副反应而动态降解。特别是在高电流密度下,界面会变厚,加剧电极降解。在此,我们采用用于镁金属的三维MgBi支架,其高表面积降低了有效电流密度,以避免电解质持续分解,良好的镁亲和力使成核均匀化。大大减轻的钝化层反而可以作为稳定的固体/电解质界面。对称电池在电流密度为0.1和4 mA cm时,过电位分别为0.21和0.50 V,并且在非腐蚀性传统电解质中,在0.5 mA cm下循环300次以上具有优异的循环性能。这项工作证明,控制动态钝化可以实现高功率密度的镁金属阳极。