Suppr超能文献

基于低覆盖度二代测序基因分型数据的同源六倍体甘薯遗传图谱构建

Genetic Mapping in Autohexaploid Sweet Potato with Low-Coverage NGS-Based Genotyping Data.

作者信息

Yamamoto Eiji, Shirasawa Kenta, Kimura Takumi, Monden Yuki, Tanaka Masaru, Isobe Sachiko

机构信息

Kazusa DNA Research Institute, Japan.

Graduate School of Environmental and Life Science, Okayama University, Japan, and.

出版信息

G3 (Bethesda). 2020 Aug 5;10(8):2661-2670. doi: 10.1534/g3.120.401433.

Abstract

Next-generation sequencing (NGS)-based genotyping methods can generate numerous genetic markers in a single experiment and have contributed to plant genetic mapping. However, for high precision genetic analysis, the complicated genetic segregation mode in polyploid organisms requires high-coverage NGS data and elaborate analytical algorithms. In the present study, we propose a simple strategy for the genetic mapping of polyploids using low-coverage NGS data. The validity of the strategy was investigated using simulated data. Previous studies indicated that accurate allele dosage estimation from low-coverage NGS data (read depth < 40) is difficult. Therefore, we used allele dosage probabilities calculated from read counts in association analyses to detect loci associated with phenotypic variations. The allele dosage probabilities showed significant detection power, although higher allele dosage estimation accuracy resulted in higher detection power. On the contrary, differences in the segregation patterns between the marker and causal genes resulted in a drastic decrease in detection power even if the marker and casual genes were in complete linkage and the allele dosage estimation was accurate. These results indicated that the use of a larger number of markers is advantageous, even if the accuracy of allele dosage estimation is low. Finally, we applied the strategy for the genetic mapping of autohexaploid sweet potato () populations to detect loci associated with agronomic traits. Our strategy could constitute a cost-effective approach for preliminary experiments done performed to large-scale studies.

摘要

基于下一代测序(NGS)的基因分型方法可在单次实验中生成大量遗传标记,为植物遗传图谱构建做出了贡献。然而,对于高精度遗传分析,多倍体生物中复杂的遗传分离模式需要高覆盖度的NGS数据和精细的分析算法。在本研究中,我们提出了一种利用低覆盖度NGS数据进行多倍体遗传图谱构建的简单策略。利用模拟数据对该策略的有效性进行了研究。先前的研究表明,从低覆盖度NGS数据(读数深度<40)中准确估计等位基因剂量很困难。因此,我们在关联分析中使用从读数计数计算得到的等位基因剂量概率来检测与表型变异相关的位点。等位基因剂量概率显示出显著的检测能力,尽管等位基因剂量估计准确性越高,检测能力也越高。相反,即使标记与因果基因完全连锁且等位基因剂量估计准确,标记与因果基因之间分离模式的差异也会导致检测能力急剧下降。这些结果表明,即使等位基因剂量估计准确性较低,使用更多的标记也是有利的。最后,我们将该策略应用于同源六倍体甘薯()群体的遗传图谱构建,以检测与农艺性状相关的位点。我们的策略可为从初步实验到大规模研究提供一种经济高效的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验