Suppr超能文献

基于全基因组游离 DNA 突变整合的超灵敏癌症监测方法。

Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring.

机构信息

New York Genome Center, New York, NY, USA.

Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.

出版信息

Nat Med. 2020 Jul;26(7):1114-1124. doi: 10.1038/s41591-020-0915-3. Epub 2020 Jun 1.

Abstract

In many areas of oncology, we lack sensitive tools to track low-burden disease. Although cell-free DNA (cfDNA) shows promise in detecting cancer mutations, we found that the combination of low tumor fraction (TF) and limited number of DNA fragments restricts low-disease-burden monitoring through the prevailing deep targeted sequencing paradigm. We reasoned that breadth may supplant depth of sequencing to overcome the barrier of cfDNA abundance. Whole-genome sequencing (WGS) of cfDNA allowed ultra-sensitive detection, capitalizing on the cumulative signal of thousands of somatic mutations observed in solid malignancies, with TF detection sensitivity as low as 10. The WGS approach enabled dynamic tumor burden tracking and postoperative residual disease detection, associated with adverse outcome. Thus, we present an orthogonal framework for cfDNA cancer monitoring via genome-wide mutational integration, enabling ultra-sensitive detection, overcoming the limitation of cfDNA abundance and empowering treatment optimization in low-disease-burden oncology care.

摘要

在肿瘤学的许多领域,我们缺乏敏感的工具来跟踪低负担疾病。虽然游离细胞 DNA (cfDNA) 在检测癌症突变方面显示出了潜力,但我们发现低肿瘤分数 (TF) 和有限数量的 DNA 片段的组合限制了通过流行的深度靶向测序范式进行低疾病负担监测。我们推断,广度可能会取代测序的深度,以克服 cfDNA 丰度的障碍。cfDNA 的全基因组测序 (WGS) 允许超灵敏检测,利用在实体恶性肿瘤中观察到的数千个体细胞突变的累积信号,TF 检测灵敏度低至 10。WGS 方法能够进行动态肿瘤负担跟踪和术后残留疾病检测,并与不良预后相关。因此,我们通过全基因组突变整合为 cfDNA 癌症监测提供了一个正交框架,实现了超灵敏检测,克服了 cfDNA 丰度的限制,并为低疾病负担肿瘤学治疗优化提供了支持。

相似文献

1
Genome-wide cell-free DNA mutational integration enables ultra-sensitive cancer monitoring.
Nat Med. 2020 Jul;26(7):1114-1124. doi: 10.1038/s41591-020-0915-3. Epub 2020 Jun 1.
2
The Landscape of Actionable Genomic Alterations in Cell-Free Circulating Tumor DNA from 21,807 Advanced Cancer Patients.
Clin Cancer Res. 2018 Aug 1;24(15):3528-3538. doi: 10.1158/1078-0432.CCR-17-3837. Epub 2018 May 18.
3
Ultra-Sensitive Mutation Detection and Genome-Wide DNA Copy Number Reconstruction by Error-Corrected Circulating Tumor DNA Sequencing.
Clin Chem. 2018 Nov;64(11):1626-1635. doi: 10.1373/clinchem.2018.289629. Epub 2018 Aug 27.
4
High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants.
Nat Med. 2019 Dec;25(12):1928-1937. doi: 10.1038/s41591-019-0652-7. Epub 2019 Nov 25.
5
Ultrasensitive plasma-based monitoring of tumor burden using machine-learning-guided signal enrichment.
Nat Med. 2024 Jun;30(6):1655-1666. doi: 10.1038/s41591-024-03040-4. Epub 2024 Jun 14.
6
Methods for Measuring ctDNA in Lymphomas.
Methods Mol Biol. 2019;1881:253-265. doi: 10.1007/978-1-4939-8876-1_19.
7
Whole genome deep sequencing analysis of cell-free DNA in samples with low tumour content.
BMC Cancer. 2022 Jan 20;22(1):85. doi: 10.1186/s12885-021-09160-1.
8
Circulating Cell-Free Tumor DNA Analysis of 50 Genes by Next-Generation Sequencing in the Prospective MOSCATO Trial.
Clin Cancer Res. 2016 Jun 15;22(12):2960-8. doi: 10.1158/1078-0432.CCR-15-2470. Epub 2016 Jan 12.
9
Genomic variations in plasma cell free DNA differentiate early stage lung cancers from normal controls.
Lung Cancer. 2015 Oct;90(1):78-84. doi: 10.1016/j.lungcan.2015.07.002. Epub 2015 Jul 15.
10
Tumor fraction-guided cell-free DNA profiling in metastatic solid tumor patients.
Genome Med. 2021 May 31;13(1):96. doi: 10.1186/s13073-021-00898-8.

引用本文的文献

2
Improvement of the sensitivity of circulating tumor DNA-based liquid biopsy: current approaches and future perspectives.
Explor Target Antitumor Ther. 2025 Aug 8;6:1002333. doi: 10.37349/etat.2025.1002333. eCollection 2025.
3
Identification of Somatic Variants in Cancer Genomes from Tissue and Liquid Biopsy Samples.
Methods Mol Biol. 2025;2932:291-301. doi: 10.1007/978-1-0716-4566-6_16.
4
A 14-Gene Panel for Predicting Colorectal Cancer Recurrence Using Circulating Tumor DNA in Different Testing Conditions.
Cancer Sci. 2025 Sep;116(9):2499-2506. doi: 10.1111/cas.70114. Epub 2025 Jun 30.
5
8
Methyl-CODEC enables simultaneous methylation and duplex sequencing.
Nucleic Acids Res. 2025 May 22;53(10). doi: 10.1093/nar/gkaf482.
10

本文引用的文献

1
ChIP-seq of plasma cell-free nucleosomes identifies gene expression programs of the cells of origin.
Nat Biotechnol. 2021 May;39(5):586-598. doi: 10.1038/s41587-020-00775-6. Epub 2021 Jan 11.
2
Distinct Classes of Complex Structural Variation Uncovered across Thousands of Cancer Genome Graphs.
Cell. 2020 Oct 1;183(1):197-210.e32. doi: 10.1016/j.cell.2020.08.006.
3
High-intensity sequencing reveals the sources of plasma circulating cell-free DNA variants.
Nat Med. 2019 Dec;25(12):1928-1937. doi: 10.1038/s41591-019-0652-7. Epub 2019 Nov 25.
5
RNA sequence analysis reveals macroscopic somatic clonal expansion across normal tissues.
Science. 2019 Jun 7;364(6444). doi: 10.1126/science.aaw0726.
6
Genome-wide cell-free DNA fragmentation in patients with cancer.
Nature. 2019 Jun;570(7761):385-389. doi: 10.1038/s41586-019-1272-6. Epub 2019 May 29.
7
Analysis of Plasma Cell-Free DNA by Ultradeep Sequencing in Patients With Stages I to III Colorectal Cancer.
JAMA Oncol. 2019 Aug 1;5(8):1124-1131. doi: 10.1001/jamaoncol.2019.0528.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验