Department Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America.
Department Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ 07030, United States of America.
Mater Sci Eng C Mater Biol Appl. 2020 Aug;113:110981. doi: 10.1016/j.msec.2020.110981. Epub 2020 Apr 24.
Bone tissue engineering aims to alleviate the shortage of available autograft material and the biological/mechanical incompatibility of allografts through fabrication of bioactive synthetic bone graft substitutes. However, these substitute grafting materials have insufficient biological potency that limits their clinical efficacy in regenerating large defects. Extracellular matrix, a natural tissue scaffold laden with biochemical and structural cues regulating cell adhesion and tissue morphogenesis, may be a versatile supplement that can extend its biological functionality to synthetic grafts. Embedding decellularized extracellular matrix (dECM) into synthetic polymers offers a promising strategy to enhance cellular response to synthetic materials, mitigate physical and mechanical limitations of dECMs, and improve clinical utility of synthetic bone grafts. Enriched with dECM biochemical cues, synthetic polymers can be readily fabricated into complex biocomposite grafts that mimic bone structure and stimulate endogenous cells to regenerate bone. In this study, cell-derived dECMs from osteoblast and endothelial cells were incorporated into polycaprolactone (PCL) solutions for electrospinning dual-layer nanofibrous scaffolds with osteogenic and vascular cues. The study examined the bioactivity of dECM scaffolds in osteoblast cultures for cell number, mineral deposits, and osteogenic markers, as well as regeneration of cortical bone defect in a rat femur. Scaffolds with osteoblast dECM had a significantly robust osteoblast proliferation, Alizarin Red staining/concentration, and osteopontin-positive extracellular deposits. Implanted scaffolds increased bone growth in femoral defects, and constructs with both osteogenic and vascular cues significantly improved cortical width. These findings demonstrate the potential to fabricate tailored biomimetic grafts with dECM cues and fibrous architecture for bone applications.
骨组织工程旨在通过制造生物活性合成骨移植物替代物来缓解可用自体移植物材料的短缺和同种异体移植物的生物/力学相容性问题。然而,这些替代移植物材料的生物效力不足,限制了它们在再生大缺陷方面的临床疗效。细胞外基质是一种天然的组织支架,富含调节细胞黏附和组织形态发生的生化和结构线索,可能是一种多功能的补充剂,可以将其生物功能扩展到合成移植物上。将脱细胞细胞外基质 (dECM) 嵌入合成聚合物中提供了一种很有前途的策略,可以增强细胞对合成材料的反应,减轻 dECM 的物理和机械限制,并提高合成骨移植物的临床实用性。富含 dECM 生化线索的合成聚合物可以很容易地被制成复杂的仿生复合移植物,模仿骨结构并刺激内源性细胞再生骨。在这项研究中,从成骨细胞和内皮细胞中提取的细胞衍生 dECM 被掺入聚己内酯 (PCL) 溶液中,用于电纺双层纳米纤维支架,具有成骨和血管线索。该研究检查了 dECM 支架在成骨细胞培养中的生物活性,包括细胞数量、矿物质沉积和成骨标志物,以及大鼠股骨皮质骨缺损的再生。具有成骨细胞 dECM 的支架具有明显的成骨细胞增殖、茜素红染色/浓度和骨桥蛋白阳性细胞外沉积物。植入支架增加了股骨缺损中的骨生长,具有成骨和血管线索的构建体显著改善了皮质宽度。这些发现表明有可能制造具有 dECM 线索和纤维结构的定制仿生移植物用于骨应用。