Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
SIB Swiss Institute of Bioinformatics Quartier Sorge - Batiment Amphipole 1015, Lausanne, Switzerland.
Biol Open. 2020 Jun 23;9(6):bio052936. doi: 10.1242/bio.052936.
Adenine auxotrophy is a commonly used non-selective genetic marker in yeast research. It allows investigators to easily visualize and quantify various genetic and epigenetic events by simply reading out colony color. However, manual counting of large numbers of colonies is extremely time-consuming, difficult to reproduce and possibly inaccurate. Using cutting-edge neural networks, we have developed a fully automated pipeline for colony segmentation and classification, which speeds up white/red colony quantification 100-fold over manual counting by an experienced researcher. Our approach uses readily available training data and can be smoothly integrated into existing protocols, vastly speeding up screening assays and increasing the statistical power of experiments that employ adenine auxotrophy.
腺嘌呤营养缺陷型是酵母研究中常用的非选择性遗传标记。它允许研究人员通过简单地读取菌落颜色,轻松地可视化和量化各种遗传和表观遗传事件。然而,手动计数大量的菌落非常耗时,难以重现,并且可能不准确。我们使用最先进的神经网络,开发了一种用于菌落分割和分类的全自动化流水线,与经验丰富的研究人员手动计数相比,该流水线可将白色/红色菌落的定量速度提高 100 倍。我们的方法使用现成的训练数据,并可以顺利集成到现有的方案中,大大加快筛选试验的速度,并提高使用腺嘌呤营养缺陷型的实验的统计功效。