Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
J Phys Chem Lett. 2020 Jul 2;11(13):4984-4989. doi: 10.1021/acs.jpclett.0c01264. Epub 2020 Jun 11.
The low quantum yield of photoformation of cyclobutane pyrimidine dimers and pyrimidine-pyrimidone (6-4) adducts in DNA bases is usually associated with the presence of more favorable nonreactive decay paths and with the unlikeliness of exciting the system in a favorable conformation. Here, we prove that the ability of the reactive conical intersection to bring the system either back to the absorbing conformation or to the photoproduct must be considered as a fundamental factor in the low quantum yields of the mentioned photodamage. In support of the proposed model, the one order of magnitude difference in the quantum yield of formation of the cyclobutane thymine dimer with respect to the thymine-thymine (6-4) adduct is rationalized here by comparing the reactive ability of the seam of intersections leading respectively to the cyclobutane thymine dimer and the oxetane precursor of the thymine-thymine (6-4) adduct at the CASPT2 level of theory.
在 DNA 碱基中,形成环丁烷嘧啶二聚体和嘧啶-嘧啶酮(6-4)加合物的光致产率通常较低,这通常与存在更有利的非反应性衰减途径以及激发系统处于有利构象的可能性较小有关。在这里,我们证明了反应性圆锥交叉点将系统带回到吸收构象或光产物的能力必须被视为所提到的光损伤低量子产率的基本因素。为了支持所提出的模型,在这里通过比较分别导致环丁烷胸腺嘧啶二聚体和胸腺嘧啶-胸腺嘧啶(6-4)加合物的 oxetane 前体的交叉 seam 的反应能力,用 CASPT2 理论水平合理地解释了环丁烷胸腺嘧啶二聚体的量子产率与胸腺嘧啶-胸腺嘧啶(6-4)加合物的量子产率相差一个数量级。