Simard Mikaël, Bär Esther, Blais Danis, Bouchard Hugo
Département de physique, Université de Montréal, Complexe des sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal, Québec, H2V 0B3, Canada.
Centre de recherche du Centre hospitalier de l'Université de Montréal, 900 Rue Saint-Denis, Montréal, Québec, H2X 3H8, Canada.
Med Phys. 2020 Sep;47(9):4137-4149. doi: 10.1002/mp.14309. Epub 2020 Jul 13.
The stoichiometric calibration method for dual-energy CT (DECT) proposed by Bourque et al. (Phys Med Biol. 59:2059; 2014), which provides estimators of the electron density and the effective atomic number, is adapted to a maximum a posteriori (MAP) framework to increase the model's robustness to noise and biases in CT data, specifically for human tissues. Robust physical parameter estimation from noisy DECT scans is required to maximize the precision of quantities used for radiotherapy treatment planning such as the proton stopping power (SPR).
Estimation of electron density and effective atomic number is performed by constraining their variation to the natural range of values expected for human tissues, while maximizing attenuation data fidelity. The MAP framework is first compared against the original method using theoretical CT numbers with Gaussian noise. The quantitative accuracy of the MAP framework is then validated experimentally on the Gammex 467 phantom. Then, using two clinical datasets, the advantages of the approach are experimentally evaluated, qualitatively, and quantitatively.
The theoretical study shows that the root-mean-square error on the electron density, the effective atomic number and the SPR are, respectively, reduced from 2.3 to 1.5, 5.7 to 3.2 and 2.8 to 1.7% with the adapted framework, when analyzing soft tissues and bone together. The experimental validation study shows that the standard deviation in Gammex inserts can be reduced, on average, by factors of 1.4 (electron density), 2.7 (effective atomic number), and 1.9 (SPR), while the quantitative accuracy of the three physical parameters is preserved, on average. Evaluation on clinical datasets show apparent noise reduction in maps of all estimated physical quantities, and suggests that the MAP framework has increased robustness to beam hardening and photon starvation artifacts. Mean values for the electron density, the effective atomic number, and the SPR averaged in four uniform regions of interest (brain, muscle, adipose, and cranium), respectively, differ by 0.7, 1.8, and 0.9% between both frameworks. The standard deviation in the same regions of interest is also reduced, on average, by factors of 1.8, 6.6, and 3.2 with the MAP framework. Differences in mean value and standard deviations are statistically significant.
Theoretical and experimental results suggest that the MAP framework produces more accurate and precise estimates of the electron density and SPR. Thus, the present approach limits the propagation of noise in DECT attenuation data to radiotherapy-related parameters maps such as the SPR and the electron density. Using a MAP framework with DECT for radiotherapy treatment planning can help maximizing the precision of dose calculation. The method also provides more precise estimates of the effective atomic number. The MAP methodology is presented in a general way such that it can be adapted to any DECT image-based tissue characterization method.
Bourque等人(《物理医学与生物学》。59:2059;2014年)提出的双能CT(DECT)化学计量校准方法,可提供电子密度和有效原子序数的估计值,该方法被应用于最大后验(MAP)框架,以提高模型对CT数据中的噪声和偏差的鲁棒性,特别是针对人体组织。为了使放射治疗治疗计划中使用的量(如质子阻止本领(SPR))的精度最大化,需要从有噪声的DECT扫描中进行稳健的物理参数估计。
通过将电子密度和有效原子序数的变化限制在人体组织预期的自然值范围内,同时最大化衰减数据保真度,来进行电子密度和有效原子序数的估计。首先使用带有高斯噪声的理论CT值将MAP框架与原始方法进行比较。然后在Gammex 467体模上通过实验验证MAP框架的定量准确性。接着,使用两个临床数据集,从定性和定量方面通过实验评估该方法的优势。
理论研究表明,在同时分析软组织和骨骼时,采用改进后的框架,电子密度、有效原子序数和SPR的均方根误差分别从2.3%降至1.5%、从5.7%降至3.2%、从2.8%降至1.7%。实验验证研究表明,Gammex插件中的标准差平均可分别降低1.4倍(电子密度)、2.7倍(有效原子序数)和1.9倍(SPR),同时三个物理参数的定量准确性平均得以保留。对临床数据集的评估显示,所有估计物理量的图谱中明显降低了噪声,这表明MAP框架对束硬化和光子饥饿伪影具有更高的鲁棒性。在四个均匀感兴趣区域(脑、肌肉、脂肪和颅骨)中分别对电子密度、有效原子序数和SPR的平均值进行平均,两种框架之间的差异分别为0.7%、1.8%和0.9%。在相同感兴趣区域中的标准差平均也因MAP框架降低了1.8倍、6.6倍和3.2倍。平均值和标准差的差异具有统计学意义。
理论和实验结果表明,MAP框架能对电子密度和SPR进行更准确和精确的估计。因此,本方法限制了DECT衰减数据中的噪声传播到与放射治疗相关的参数图谱,如SPR和电子密度。在放射治疗治疗计划中使用带有DECT的MAP框架有助于使剂量计算的精度最大化。该方法还能对有效原子序数提供更精确的估计。MAP方法以一种通用的方式呈现,使得它可以适用于任何基于DECT图像的组织表征方法。