Suppr超能文献

利用频谱分析和机器学习方法对个体化抗高血压药物的关键特征进行分析。

Characterizing the critical features when personalizing antihypertensive drugs using spectrum analysis and machine learning methods.

机构信息

Pharmacy Department, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.

Engineering Research Center of Medical Information Technology, Ministry of Education, West China Hospital of Sichuan University, Chengdu, Sichuan, 610041, China.

出版信息

Artif Intell Med. 2020 Apr;104:101841. doi: 10.1016/j.artmed.2020.101841. Epub 2020 Feb 29.

Abstract

Globally, methods of controlling blood pressure in hypertension patients remain inefficient. The difficulty of prescribing appropriate drugs specific to a patient's clinical features serves as one of the most important factors. Characterizing the critical drug-related features, just like that of the antibacterial spectrum (where each item is sensitive to the targeted drug's effectiveness or a specified indication), may help a doctor easily prescribe appropriate drugs by matching a patient's attributes with drug-related features, and effectiveness of the selected drugs would also be ascertained. In this study, we aimed to apply data mining methods to obtain the clinical characteristics spectrum or important clinical features of five frequently used drugs (Irbesartan, Metoprolol, Felodipine, Amlodipine, and Levamlodipine) for hypertension control by comparing successful and unsuccessful cases. Spectrum analysis based on a statistical method and five algorithms based on machine learning were used to extract the critical clinical features. A visualized relative weight matrix was then achieved by combining the results from the characteristic spectrum and machine learning-based methods. Our results indicated that the five targeted antihypertension agents had different importance orders of the 15 relative clinical features. Clinical analysis showed that the extracted important clinical attributes of the five drugs were both reasonable and meaningful in the selection of hypertension treatment. Therefore, our study provided a data-driven reference for the personalization of clinical antihypertensive drugs.

摘要

全球范围内,高血压患者的血压控制方法仍然效率低下。为患者的临床特征开具特定药物的困难是最重要的因素之一。描述关键的药物相关特征,就像抗菌谱一样(每个项目都对靶向药物的有效性或特定指示敏感),可以帮助医生通过将患者的属性与药物相关特征和选定药物的有效性相匹配,轻松地开出合适的药物。在这项研究中,我们旨在应用数据挖掘方法,通过比较成功和不成功的病例,获得五种常用降压药(厄贝沙坦、美托洛尔、非洛地平、氨氯地平和左旋氨氯地平)的临床特征谱或重要临床特征。基于统计方法的谱分析和基于机器学习的五种算法被用于提取关键临床特征。然后,通过结合特征谱和基于机器学习的方法的结果,得到可视化的相对权重矩阵。我们的结果表明,这五种靶向降压药的 15 个相对临床特征的重要性顺序不同。临床分析表明,从五种药物中提取的重要临床属性在高血压治疗的选择中是合理且有意义的。因此,我们的研究为临床抗高血压药物的个性化提供了数据驱动的参考。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验