Suppr超能文献

胶原纤维结构中的一种新的纵向变化及其与机械损伤易感性位置的关系。

A new longitudinal variation in the structure of collagen fibrils and its relationship to locations of mechanical damage susceptibility.

作者信息

Baldwin Samuel J, Sampson Josh, Peacock Christopher J, Martin Meghan L, Veres Samuel P, Lee J Michael, Kreplak Laurent

机构信息

Department of Physics and Atmospheric Science, Dalhousie University, Sir James Dunn Building, 6310 Coburg Road, Main Office Rm 218, Halifax, NS, B3H 4R2, Canada.

School of Biomedical Engineering, Dalhousie University, 5981 University Avenue, PO Box 15000, Halifax, NS, B3H 4R2, Canada.

出版信息

J Mech Behav Biomed Mater. 2020 Oct;110:103849. doi: 10.1016/j.jmbbm.2020.103849. Epub 2020 May 18.

Abstract

The hierarchical architecture of the collagen fibril is well understood, involving non-integer staggering of collagen molecules which results in a 67 nm periodic molecular density variation termed D-banding. Other than this variation, collagen fibrils are considered to be homogeneous at the micro-scale and beyond. Interestingly, serial kink structures have been shown to form at discrete locations along the length of collagen fibrils from some mechanically overloaded tendons. The formation of these kinks at discrete locations along the length of fibrils (discrete plasticity) may indicate pre-existing structural variations at a length scale greater than that of the D-banding. Using a high velocity nanomechanical mapping technique, 25 tendon collagen fibrils, were mechanically and structurally mapped along 10 μm of their length in dehydrated and hydrated states with resolutions of 20 nm and 8 nm respectively. Analysis of the variation in hydrated indentation modulus along individual collagen fibrils revealed a micro-scale structural variation not observed in the hydrated or dehydrated structural maps. The spacing distribution of this variation was similar to that observed for inter-kink distances seen in SEM images of discrete plasticity type damage. We propose that longitudinal variation in collagen fibril structure leads to localized mechanical susceptibility to damage under overload. Furthermore, we suggest that this variation has its origins in heterogeneous crosslink density along the length of collagen fibrils. The presence of pre-existing sites of mechanical vulnerability along the length of collagen fibrils may be important to biological remodeling of tendon, with mechanically-activated sites having distinct protein binding capabilities and enzyme susceptibility.

摘要

胶原纤维的分层结构已得到充分理解,这涉及胶原分子的非整数交错排列,从而导致一种67纳米周期性分子密度变化,称为D带。除了这种变化之外,胶原纤维在微观尺度及以上被认为是均匀的。有趣的是,已发现来自一些机械过载肌腱的胶原纤维在其长度上的离散位置会形成连续的扭结结构。这些扭结在纤维长度上的离散位置形成(离散可塑性)可能表明在大于D带的长度尺度上存在预先存在的结构变化。使用高速纳米力学映射技术,对25根肌腱胶原纤维在脱水和水合状态下沿其10微米长度进行了机械和结构映射,分辨率分别为20纳米和8纳米。对单个胶原纤维上水合压痕模量变化的分析揭示了在水合或脱水结构映射中未观察到的微观尺度结构变化。这种变化的间距分布与在离散可塑性类型损伤的扫描电子显微镜图像中观察到的扭结间距离的分布相似。我们提出胶原纤维结构的纵向变化会导致在过载下局部对损伤的机械易感性。此外,我们认为这种变化源于沿胶原纤维长度的异质交联密度。沿胶原纤维长度预先存在的机械脆弱位点的存在可能对肌腱的生物重塑很重要,因为机械激活位点具有独特的蛋白质结合能力和酶敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验