Suppr超能文献

纳米盘自组装是热力学可逆和可控的。

Nanodisc self-assembly is thermodynamically reversible and controllable.

机构信息

Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.

出版信息

Soft Matter. 2020 Jun 24;16(24):5615-5623. doi: 10.1039/d0sm00336k.

Abstract

Many highly ordered complex systems form by the spontaneous self-assembly of simpler subunits. An important biophysical tool that relies on self-assembly is the Nanodisc system, which finds extensive use as native-like environments for studying membrane proteins. Nanodiscs are self-assembled from detergent-solubilized mixtures of phospholipids and engineered helical proteins called membrane scaffold proteins (MSPs). Detergent removal results in the formation of nanoscale bilayers stabilized by two MSP "belts." Despite their numerous applications in biology, and contributions from many laboratories world-wide, little is known about the self-assembly process such as when the bilayer forms or when the MSP associates with lipids. We use fluorescence and optical spectroscopy to probe self-assembly at various equilibria defined by the detergent concentration. We show that the bilayer begins forming below the critical micellar concentration of the detergent (10 mM), and the association of MSP and lipids begins at lower detergent levels, showing a dependence on the concentrations of MSP and lipids. Following the dissolution process by adding detergent to purified Nanodiscs demonstrates that the self-assembly is reversible. Our data demonstrate that Nanodisc self-assembly is experimentally accessible, and that controlling the detergent concentration allows exquisite control over the self-assembly reaction. This improved understanding of self-assembly could lead to better functional incorporation of hitherto intractable membrane target proteins.

摘要

许多高度有序的复杂系统通过更简单的亚基的自发自组装形成。自组装依赖于自组装的一个重要的生物物理工具是纳米盘系统,它被广泛用作研究膜蛋白的类似天然环境。纳米盘是由去污剂溶解的磷脂混合物和称为膜支架蛋白(MSP)的工程化螺旋蛋白自组装而成的。去污剂去除后,形成由两个 MSP“腰带”稳定的纳米级双层。尽管它们在生物学中有许多应用,并得到了世界各地许多实验室的贡献,但对于自组装过程知之甚少,例如双层何时形成或 MSP 何时与脂质结合。我们使用荧光和光谱技术在由去污剂浓度定义的各种平衡条件下探测自组装。我们表明双层在去污剂的临界胶束浓度(10mM)以下开始形成,并且 MSP 和脂质的缔合在较低的去污剂水平下开始,表明对 MSP 和脂质的浓度存在依赖性。通过向纯化的纳米盘中添加去污剂来跟踪溶解过程表明自组装是可逆的。我们的数据表明,纳米盘自组装是可实验获得的,并且控制去污剂浓度可以对自组装反应进行精细控制。对自组装的这种更好的理解可能会导致迄今难以处理的膜靶蛋白的更好的功能整合。

相似文献

1
Nanodisc self-assembly is thermodynamically reversible and controllable.
Soft Matter. 2020 Jun 24;16(24):5615-5623. doi: 10.1039/d0sm00336k.
3
Biophysical characterization of membrane proteins in nanodiscs.
Methods. 2013 Mar;59(3):287-300. doi: 10.1016/j.ymeth.2012.11.006. Epub 2012 Dec 3.
4
The nanodisc: a novel tool for membrane protein studies.
Biol Chem. 2009 Aug;390(8):805-14. doi: 10.1515/BC.2009.091.
5
Phospholipid phase transitions in homogeneous nanometer scale bilayer discs.
FEBS Lett. 2004 Jan 2;556(1-3):260-4. doi: 10.1016/s0014-5793(03)01400-5.
6
Non-ionic detergent assists formation of supercharged nanodiscs and insertion of membrane proteins.
Biochim Biophys Acta Biomembr. 2022 Jun 1;1864(6):183884. doi: 10.1016/j.bbamem.2022.183884. Epub 2022 Feb 16.
7
Assessment of the functionality and stability of detergent purified nAChR from Torpedo using lipidic matrixes and macroscopic electrophysiology.
Biochim Biophys Acta. 2016 Jan;1858(1):47-56. doi: 10.1016/j.bbamem.2015.10.002. Epub 2015 Oct 8.
8
Controlled Co-reconstitution of Multiple Membrane Proteins in Lipid Bilayer Nanodiscs Using DNA as a Scaffold.
ACS Chem Biol. 2015 Nov 20;10(11):2448-54. doi: 10.1021/acschembio.5b00627. Epub 2015 Sep 21.
9
Membrane Protein Production in E. coli Lysates in Presence of Preassembled Nanodiscs.
Methods Mol Biol. 2017;1586:291-312. doi: 10.1007/978-1-4939-6887-9_19.
10
Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR.
Protein J. 2015 Jun;34(3):205-11. doi: 10.1007/s10930-015-9613-2.

引用本文的文献

1
Examining the Thermotropic properties of Large, Circularized Nanodiscs.
bioRxiv. 2025 Apr 10:2025.04.07.647641. doi: 10.1101/2025.04.07.647641.
2
Nanodiscs: A toolkit for membrane protein science.
Protein Sci. 2021 Feb;30(2):297-315. doi: 10.1002/pro.3994. Epub 2020 Nov 16.

本文引用的文献

1
Self-Assembly of Polymer-Encased Lipid Nanodiscs and Membrane Protein Reconstitution.
J Phys Chem B. 2019 May 30;123(21):4562-4570. doi: 10.1021/acs.jpcb.9b03681. Epub 2019 May 16.
2
Comprehensive Study of the Self-Assembly of Phospholipid Nanodiscs: What Determines Their Shape and Stoichiometry?
Langmuir. 2018 Oct 23;34(42):12569-12582. doi: 10.1021/acs.langmuir.8b01503. Epub 2018 Oct 10.
3
Nanodiscs: A Controlled Bilayer Surface for the Study of Membrane Proteins.
Annu Rev Biophys. 2018 May 20;47:107-124. doi: 10.1146/annurev-biophys-070816-033620. Epub 2018 Mar 1.
4
Spontaneous Lipid Nanodisc Fomation by Amphiphilic Polymethacrylate Copolymers.
J Am Chem Soc. 2017 Dec 27;139(51):18657-18663. doi: 10.1021/jacs.7b10591. Epub 2017 Dec 5.
6
Thermotropic properties of phosphatidylcholine nanodiscs bounded by styrene-maleic acid copolymers.
Chem Phys Lipids. 2017 Nov;208:58-64. doi: 10.1016/j.chemphyslip.2017.08.010. Epub 2017 Sep 18.
7
Thermodynamics of nanodisc formation mediated by styrene/maleic acid (2:1) copolymer.
Sci Rep. 2017 Sep 14;7(1):11517. doi: 10.1038/s41598-017-11616-z.
8
Bioinspired, Size-Tunable Self-Assembly of Polymer-Lipid Bilayer Nanodiscs.
Angew Chem Int Ed Engl. 2017 Sep 11;56(38):11466-11470. doi: 10.1002/anie.201705569. Epub 2017 Aug 10.
9
Interaction of KRas4b with anionic membranes: A special role for PIP.
Biochem Biophys Res Commun. 2017 May 27;487(2):351-355. doi: 10.1016/j.bbrc.2017.04.063. Epub 2017 Apr 13.
10
Nanodiscs in Membrane Biochemistry and Biophysics.
Chem Rev. 2017 Mar 22;117(6):4669-4713. doi: 10.1021/acs.chemrev.6b00690. Epub 2017 Feb 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验