Ombaka Lucy M, Curti Mariano, McGettrick James D, Davies Matthew L, Bahnemann Detlef W
Institut für Technische Chemie, Gottfried Wilhelm Leibniz Universität Hannover, Callinstrasse 3, Hannover 30167, Germany.
School of Chemistry and Material Science, Technical University of Kenya, P.O. Box 52428-00200, Nairobi, Kenya.
ACS Appl Mater Interfaces. 2020 Jul 8;12(27):30365-30380. doi: 10.1021/acsami.0c06880. Epub 2020 Jun 24.
Zero-valent copper (Cu) is a promising co-catalyst in semiconductor-based photocatalysis as it is inexpensive and exhibits electronic properties similar to those of Ag and Au. However, its practical application in photocatalytic hydrogen production is limited by its susceptibility to oxidation, forming less active Cu species. Herein, we have carried out encapsulation of Cu nanoparticles with N-graphitic carbon layers (14.4% N) to stabilize Cu nanoparticles (N/C-coated Cu) and improve the electronic communication with a TiO photocatalyst. A facile solvothermal procedure is used to coat the Cu nanoparticles at 200 °C, while graphitization is achieved by calcination at 550 °C under an inert atmosphere. The resultant N/C-coated Cu/TiO composites outperform the uncoated Cu counterparts, exhibiting a 27-fold enhancement of the hydrogen evolution rate compared to TiO and achieving a rate of 19.03 mmol g h under UV-vis irradiation. Likewise, the N/C-coated Cu co-catalyst exhibits a less negative onset potential of -0.05 V toward hydrogen evolution compared to uncoated Cu (. -0.30 V). This superior activity is attributed to coating Cu with N/C, which enhances the stability, electronic communication with TiO, conductivity, and interfacial charge transfer processes. The reported synthetic approach is simple and scalable, yielding an efficient and affordable Cu co-catalyst for TiO.
零价铜(Cu)是一种很有前景的基于半导体的光催化助催化剂,因为它价格低廉,并且具有与银和金相似的电子特性。然而,其在光催化制氢中的实际应用受到其易氧化的限制,会形成活性较低的铜物种。在此,我们用含氮量为14.4%的氮掺杂石墨碳层对铜纳米颗粒进行了包覆,以稳定铜纳米颗粒(氮掺杂碳包覆铜)并改善与二氧化钛光催化剂的电子通讯。采用简便的溶剂热法在200℃下包覆铜纳米颗粒,同时通过在惰性气氛中550℃煅烧实现石墨化。所得的氮掺杂碳包覆铜/二氧化钛复合材料的性能优于未包覆铜的对应物,与二氧化钛相比,析氢速率提高了27倍,在紫外-可见光照射下达到了19.03 mmol g⁻¹ h⁻¹的速率。同样,与未包覆铜(-0.30 V)相比,氮掺杂碳包覆铜助催化剂对析氢的起始电位负性更小,为-0.05 V。这种优异的活性归因于用氮掺杂碳包覆铜,这增强了稳定性、与二氧化钛的电子通讯、导电性以及界面电荷转移过程。所报道的合成方法简单且可扩展,为二氧化钛制备了一种高效且经济的铜助催化剂。