School of Chemical Engineering, National Technical University of Athens, Athens, 15780, Greece.
Nanoinformatics Department, NovaMechanics Ltd., Nicosia, 1065, Cyprus.
Small. 2020 Sep;16(36):e2001080. doi: 10.1002/smll.202001080. Epub 2020 Jun 17.
This study presents the results of applying deep learning methodologies within the ecotoxicology field, with the objective of training predictive models that can support hazard assessment and eventually the design of safer engineered nanomaterials (ENMs). A workflow applying two different deep learning architectures on microscopic images of Daphnia magna is proposed that can automatically detect possible malformations, such as effects on the length of the tail, and the overall size, and uncommon lipid concentrations and lipid deposit shapes, which are due to direct or parental exposure to ENMs. Next, classification models assign specific objects (heart, abdomen/claw) to classes that depend on lipid densities and compare the results with controls. The models are statistically validated in terms of their prediction accuracy on external D. magna images and illustrate that deep learning technologies can be useful in the nanoinformatics field, because they can automate time-consuming manual procedures, accelerate the investigation of adverse effects of ENMs, and facilitate the process of designing safer nanostructures. It may even be possible in the future to predict impacts on subsequent generations from images of parental exposure, reducing the time and cost involved in long-term reproductive toxicity assays over multiple generations.
本研究展示了深度学习方法在生态毒理学领域的应用成果,旨在训练预测模型,以支持危害评估,并最终设计更安全的工程纳米材料(ENMs)。提出了一种应用于大型水蚤微观图像的两种不同深度学习架构的工作流程,该流程可以自动检测可能的畸形,例如对尾巴长度和整体大小的影响,以及由于直接或母体暴露于 ENMs 而导致的不常见的脂质浓度和脂质沉积形状。接下来,分类模型将特定对象(心脏、腹部/爪)分配到依赖于脂质密度的类别,并将结果与对照进行比较。这些模型在外部大型水蚤图像上的预测准确性方面进行了统计学验证,并说明了深度学习技术在纳米信息学领域的有用性,因为它们可以自动化耗时的手动程序,加速对 ENMs 的不良影响的研究,并促进设计更安全的纳米结构的过程。从母体暴露的图像中预测对后代的影响可能在未来成为可能,从而减少涉及多代的长期生殖毒性试验的时间和成本。