Department of Metabolic & Structural Biology, CSIR-Central Institute of Medicinal & Aromatic Plants, Lucknow 226015, India; Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
Department of Biochemistry, Molecular Biology & Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
J Infect Public Health. 2020 Sep;13(9):1210-1223. doi: 10.1016/j.jiph.2020.06.016. Epub 2020 Jun 16.
The rapidly enlarging COVID-19 pandemic caused by the novel SARS-corona virus-2 is a global public health emergency of an unprecedented level. Unfortunately no treatment therapy or vaccine is yet available to counter the SARS-CoV-2 infection, which substantiates the need to expand research efforts in this direction. The indispensable function of the main protease in virus replication makes this enzyme a promising target for inhibitors screening and drug discovery to treat novel coronavirus infection. The recently concluded α-ketoamide ligand-bound X-ray crystal structure of SARS-CoV-2 M (PDB ID: 6Y2F) from Zhang et al. has revealed the potential inhibitor binding mechanism and the molecular determinants responsible for substrate binding.
For the study, we have targeted the SARS-CoV-2 M for the screening of FDA approved antiviral drugs and carried out molecular docking based virtual screening. Further molecular dynamic simulation studies of the top three selected drugs carried out to investigated for their binding affinity and stability in the SARS-CoV-2 M active site. The phylogenetic analysis was also performed to know the relatedness between the SARS-CoV-2 genomes isolated from different countries.
The phylogenetic analysis of the SARS-CoV-2 genome reveals that the virus is closely related to the Bat-SL-CoV and does not exhibit any divergence at the genomic level. Molecular docking studies revealed that among the 77 drugs, screened top ten drugs shows good binding affinities, whereas the top three drugs: Lopinavir-Ritonavir, Tipranavir, and Raltegravir were undergone for molecular dynamics simulation studies for their conformational stability in the active site of the SARS-CoV-2 M protein.
In the present study among the library of FDA approved antiviral drugs, the top three inhibitors Lopinavir-Ritonavir, Tipranavir, and Raltegravir show the best molecular interaction with the main protease of SARS-CoV-2. However, the in-vitro efficacy of the drug molecules screened in this study further needs to be corroborated by carrying out a biochemical and structural investigation.
由新型 SARS-CoV-2 引起的 COVID-19 大流行是一场前所未有的全球公共卫生紧急事件。不幸的是,目前还没有治疗或疫苗可以对抗 SARS-CoV-2 感染,这使得我们有必要在这方面扩大研究力度。该病毒的主要蛋白酶在病毒复制过程中发挥着不可或缺的作用,这使得该酶成为筛选抑制剂和发现治疗新型冠状病毒感染药物的有前途的靶标。最近,Zhang 等人公布的 SARS-CoV-2 M(PDB ID:6Y2F)的 α-酮酰胺配体结合的 X 射线晶体结构揭示了潜在的抑制剂结合机制和负责底物结合的分子决定因素。
在这项研究中,我们针对 SARS-CoV-2 M 进行了筛选,以寻找已获美国食品和药物管理局批准的抗病毒药物,并进行了基于分子对接的虚拟筛选。进一步对前三种选定药物进行了分子动力学模拟研究,以研究它们在 SARS-CoV-2 M 活性部位的结合亲和力和稳定性。还进行了系统发育分析,以了解来自不同国家的 SARS-CoV-2 基因组之间的亲缘关系。
SARS-CoV-2 基因组的系统发育分析表明,该病毒与蝙蝠-SL-CoV 密切相关,在基因组水平上没有任何差异。分子对接研究表明,在所筛选的 77 种药物中,前 10 种药物显示出良好的结合亲和力,而前三种药物:洛匹那韦-利托那韦、替普那韦和拉替拉韦则进行了分子动力学模拟研究,以研究它们在 SARS-CoV-2 M 蛋白活性部位的构象稳定性。
在本研究中,在所筛选的美国食品和药物管理局批准的抗病毒药物库中,前三种抑制剂洛匹那韦-利托那韦、替普那韦和拉替拉韦与 SARS-CoV-2 的主要蛋白酶表现出最佳的分子相互作用。然而,进一步需要通过进行生化和结构研究来证实筛选出的药物分子的体外疗效。