Suppr超能文献

利用似然比检验方法在医疗器械中进行空间聚类信号检测。

Spatial-Cluster Signal Detection in Medical Devices Using Likelihood Ratio Test Method.

机构信息

U.S. Food and Drug Administration, Silver Spring, MD, USA.

Embry-Riddle Aeronautical University, Daytona Beach, FL, USA.

出版信息

Ther Innov Regul Sci. 2021 Jan;55(1):56-64. doi: 10.1007/s43441-020-00190-8. Epub 2020 Jun 22.

Abstract

BACKGROUND

With more and more medical device databases being developed, there is an increasing interest in learning the geographical patterns of medical-device-related adverse events (AEs). For a specific medical device and an adverse event (AE) of interest, our aim is to detect a spatial-cluster signal that has a significantly higher AE rate than the AE rates for other regions, when the exposure information is available.

METHODS

We develop a likelihood ratio test (LRT) method incorporating exposure information, by geographical region, for spatial-cluster signal detection when the underlying observed health outcome associated with the medical device of interest is a Poisson-modeled count data (e.g., an outcome of AE count).

RESULTS

An extensive simulation study shows that this method has good power, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). The application of the method is demonstrated by two hypothetical case studies regarding a medical device that is used for patients who have reached end-stage heart failure.

DISCUSSION

A methodological framework for exploring geographic patterns in device safety surveillance is discussed, including safety data collection, statistical tools, and display of the analysis results. The proposed statistical method can be used for spatial-cluster signal detection for an AE of interest from medical device registries or other databases that have patient-level geographical information.

摘要

背景

随着越来越多的医疗器械数据库的开发,人们对学习医疗器械相关不良事件(AE)的地理模式越来越感兴趣。对于特定的医疗器械和感兴趣的不良事件(AE),当有暴露信息时,我们的目标是检测到一个具有显著更高 AE 率的空间聚类信号,而该信号的 AE 率高于其他地区的 AE 率。

方法

我们开发了一种似然比检验(LRT)方法,该方法将暴露信息按地理区域进行了整合,以便在与感兴趣的医疗器械相关的基础观察健康结果是泊松模型计数数据(例如,AE 计数的结果)时,用于检测空间聚类信号。

结果

广泛的模拟研究表明,该方法具有良好的功效、灵敏度、特异性、阳性预测值(PPV)和阴性预测值(NPV)。该方法的应用通过两个关于用于已达到终末期心力衰竭患者的医疗器械的假设性案例研究得到了证明。

讨论

讨论了医疗器械安全性监测中探索地理模式的方法学框架,包括安全数据收集、统计工具以及分析结果的显示。所提出的统计方法可用于从具有患者水平地理信息的医疗器械登记处或其他数据库中检测到感兴趣的 AE 的空间聚类信号。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验