Department of Plant Biology, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala BioCenter, Almas Allé 5, Uppsala, Sweden.
Biochem Soc Trans. 2020 Jun 30;48(3):1005-1017. doi: 10.1042/BST20190937.
Transposable elements (TEs) constitute major fractions of plant genomes. Their potential to be mobile provides them with the capacity to cause major genome rearrangements. Those effects are potentially deleterious and enforced the evolution of epigenetic suppressive mechanisms controlling TE activity. However, beyond their deleterious effects, TE insertions can be neutral or even advantageous for the host, leading to long-term retention of TEs in the host genome. Indeed, TEs are increasingly recognized as major drivers of evolutionary novelties by regulating the expression of nearby genes. TEs frequently contain binding motifs for transcription factors and capture binding motifs during transposition, which they spread through the genome by transposition. Thus, TEs drive the evolution and diversification of gene regulatory networks by recruiting lineage-specific targets under the regulatory control of specific transcription factors. This process can explain the rapid and repeated evolution of developmental novelties, such as C4 photosynthesis and a wide spectrum of stress responses in plants. It also underpins the convergent evolution of embryo nourishing tissues, the placenta in mammals and the endosperm in flowering plants. Furthermore, the gene regulatory network underlying flower development has also been largely reshaped by TE-mediated recruitment of regulatory elements; some of them being preserved across long evolutionary timescales. In this review, we highlight the potential role of TEs as evolutionary toolkits in plants by showcasing examples of TE-mediated evolutionary novelties.
转座元件 (TEs) 构成了植物基因组的主要部分。它们的移动潜力使它们能够引起重大的基因组重排。这些影响可能是有害的,并促使进化出了控制 TE 活性的表观遗传抑制机制。然而,除了它们的有害影响之外,TE 的插入也可能对宿主是中性的,甚至是有利的,导致 TE 在宿主基因组中长期保留。事实上,TE 越来越被认为是通过调节附近基因的表达来推动进化新事物的主要驱动力。TE 经常包含转录因子的结合基序,并在转座过程中捕获结合基序,然后通过转座将其散布到基因组中。因此,TE 通过招募特定转录因子的调控控制下的谱系特异性靶标,推动基因调控网络的进化和多样化。这个过程可以解释发育新奇性的快速和重复进化,如 C4 光合作用和植物中广泛的应激反应。它也为哺乳动物的胎盘和开花植物的胚乳等胚胎滋养组织的趋同进化提供了基础。此外,花发育的基因调控网络也在很大程度上被 TE 介导的调控元件的招募所重塑;其中一些在长时间尺度上得以保留。在这篇综述中,我们通过展示 TE 介导的进化新奇性的例子,强调了 TEs 作为植物进化工具包的潜在作用。