Discovery Biology, Albany Molecular Research Inc., Buffalo, New York, USA.
USC Norris Comprehensive Cancer Center, Departments of Pathology, Biochemistry & Molecular Biology, and Molecular Microbiology & Immunology, and the Molecular and Computational Biology Section of the Department of Biological Sciences, University of Southern California Keck School of Medicine, Los Angeles, California, USA.
J Biol Chem. 2020 Aug 28;295(35):12368-12377. doi: 10.1074/jbc.RA120.014136. Epub 2020 Jun 23.
The endonuclease Artemis is responsible for opening DNA hairpins during V(D)J recombination and for processing a subset of pathological DNA double-strand breaks. Artemis is an attractive target for the development of therapeutics to manage various B cell and T cell tumors, because failure to open DNA hairpins and accumulation of chromosomal breaks may reduce the proliferation and viability of pre-T and pre-B cell derivatives. However, structure-based drug discovery of specific Artemis inhibitors has been hampered by a lack of crystal structures. Here, we report the structure of the catalytic domain of recombinant human Artemis. The catalytic domain displayed a polypeptide fold similar overall to those of other members in the DNA cross-link repair gene SNM1 family and in mRNA 3'-end-processing endonuclease CPSF-73, containing metallo-β-lactamase and β-CASP domains and a cluster of conserved histidine and aspartate residues capable of binding two metal atoms in the catalytic site. As in SNM1A, only one zinc ion was located in the Artemis active site. However, Artemis displayed several unique features. Unlike in other members of this enzyme class, a second zinc ion was present in the β-CASP domain that leads to structural reorientation of the putative DNA-binding surface and extends the substrate-binding pocket to a new pocket, pocket III. Moreover, the substrate-binding surface exhibited a dominant and extensive positive charge distribution compared with that in the structures of SNM1A and SNM1B, presumably because of the structurally distinct DNA substrate of Artemis. The structural features identified here may provide opportunities for designing selective Artemis inhibitors.
核酸内切酶 Artemis 在 V(D)J 重组过程中负责打开 DNA 发夹结构,并对部分病理性 DNA 双链断裂进行加工。Artemis 是开发用于治疗各种 B 细胞和 T 细胞肿瘤的治疗药物的一个有吸引力的靶点,因为如果不能打开 DNA 发夹结构并积累染色体断裂,可能会降低前 T 和前 B 细胞衍生物的增殖和活力。然而,由于缺乏晶体结构,基于结构的特异性 Artemis 抑制剂药物发现一直受到阻碍。在这里,我们报告了重组人 Artemis 催化结构域的结构。该催化结构域的整体多肽折叠与 DNA 交联修复基因 SNM1 家族和 mRNA 3'-末端加工内切酶 CPSF-73 的其他成员相似,包含金属β-内酰胺酶和β-CASP 结构域以及一组保守的组氨酸和天冬氨酸残基,能够在催化部位结合两个金属原子。与 SNM1A 一样,只有一个锌离子位于 Artemis 的活性部位。然而,Artemis 显示出一些独特的特征。与该酶类的其他成员不同,第二个锌离子存在于β-CASP 结构域中,导致假定的 DNA 结合表面的结构重定向,并将底物结合口袋扩展到一个新的口袋,口袋 III。此外,与 SNM1A 和 SNM1B 的结构相比,底物结合表面表现出明显的、广泛的正电荷分布,这可能是由于 Artemis 的结构独特的 DNA 底物。这里确定的结构特征可能为设计选择性 Artemis 抑制剂提供机会。