Suppr超能文献

磁共振血管造影中的脑血管定量分析。

Quantitative Analysis of the Cerebral Vasculature on Magnetic Resonance Angiography.

机构信息

Department of Neurology, Dell Medical School at The University of Texas, Austin, Texas, USA.

Department of Biomedical Engineering, University of Texas, Austin, Texas, USA.

出版信息

Sci Rep. 2020 Jun 23;10(1):10227. doi: 10.1038/s41598-020-67225-w.

Abstract

The arterial connections in the Circle of Willis are a central source of collateral blood flow and play an important role in pathologies such as stroke and mental illness. Analysis of the Circle of Willis and its variants can shed light on optimal methods of diagnosis, treatment planning, surgery, and quantification of outcomes. We developed an automated, standardized, objective, and high-throughput approach for categorizing and quantifying the Circle of Willis vascular anatomy using magnetic resonance angiography images. This automated algorithm for processing of MRA images isolates and automatically identifies key features of the cerebral vasculature such as branching of the internal intracranial internal carotid artery and the basilar artery. Subsequently, physical features of the segments of the anterior cerebral artery were acquired on a sample and intra-patient comparisons were made. We demonstrate the feasibility of using our approach to automatically classify important structures of the Circle of Willis and extract biomarkers from cerebrovasculature. Automated image analysis can provide clinically-relevant vascular features such as aplastic arteries, stenosis, aneurysms, and vessel caliper for endovascular procedures. The developed algorithm could facilitate clinical studies by supporting high-throughput automated analysis of the cerebral vasculature.

摘要

Willis 环的动脉连接是侧支血流的重要来源,在中风和精神疾病等疾病中发挥着重要作用。对 Willis 环及其变体的分析可以揭示最佳的诊断、治疗计划、手术和结果量化方法。我们开发了一种自动化、标准化、客观和高通量的方法,用于使用磁共振血管造影图像对 Willis 环血管解剖结构进行分类和量化。这种用于 MRA 图像处理的自动化算法可以分离并自动识别脑血管的关键特征,例如颈内动脉颅内段和基底动脉的分支。随后,在样本上获取大脑前动脉节段的物理特征,并进行患者内比较。我们证明了使用我们的方法自动分类 Willis 环的重要结构并从脑血管中提取生物标志物的可行性。自动图像分析可以提供与临床相关的血管特征,例如血管发育不良、狭窄、动脉瘤和血管口径,用于血管内治疗。开发的算法可以通过支持对脑血管的高通量自动分析来促进临床研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/800b/7311427/23f5bb50ea49/41598_2020_67225_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验