Edwards Ka'Toria, Chhabra Avneesh, Dormer James, Jones Phillip, Boutin Robert D, Lenchik Leon, Fei Baowei
Department of Bioengineering, University of Texas at Dallas, Richardson, TX.
Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2549406. Epub 2020 Feb 28.
CT is widely used for diagnosis and treatment of a variety of diseases, including characterization of muscle loss. In many cases, changes in muscle mass, particularly abdominal muscle, indicate how well a patient is responding to treatment. Therefore, physicians use CT to monitor changes in muscle mass throughout the patient's course of treatment. In order to measure the muscle, radiologists must segment and review each CT slice manually, which is a time-consuming task. In this work, we present a fully convolutional neural network (CNN) for the segmentation of abdominal muscle on CT. We achieved a mean Dice similarity coefficient of 0.92, a mean precision of 0.93, and a mean recall of 0.91 in an independent test set. The CNN-based segmentation method can provide an automatic tool for the segmentation of abdominal muscle. As a result, the time required to obtain information about changes in abdominal muscle using the CNN takes a fraction of the time associated with manual segmentation methods and thus can provide a useful tool in the clinical application.
CT被广泛用于各种疾病的诊断和治疗,包括肌肉量减少的特征描述。在许多情况下,肌肉量的变化,尤其是腹肌的变化,表明患者对治疗的反应情况。因此,医生使用CT来监测患者整个治疗过程中肌肉量的变化。为了测量肌肉,放射科医生必须手动分割并查看每个CT切片,这是一项耗时的任务。在这项工作中,我们提出了一种用于在CT上分割腹肌的全卷积神经网络(CNN)。在一个独立测试集中,我们实现了平均Dice相似系数为0.92、平均精度为0.93和平均召回率为0.91。基于CNN的分割方法可以为腹肌分割提供一种自动工具。结果,使用CNN获取有关腹肌变化信息所需的时间仅为与手动分割方法相关时间的一小部分,因此可以在临床应用中提供一个有用的工具。