Suppr超能文献

使用卷积神经网络从CT图像中分割腹肌

Abdominal muscle segmentation from CT using a convolutional neural network.

作者信息

Edwards Ka'Toria, Chhabra Avneesh, Dormer James, Jones Phillip, Boutin Robert D, Lenchik Leon, Fei Baowei

机构信息

Department of Bioengineering, University of Texas at Dallas, Richardson, TX.

Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX.

出版信息

Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2549406. Epub 2020 Feb 28.

Abstract

CT is widely used for diagnosis and treatment of a variety of diseases, including characterization of muscle loss. In many cases, changes in muscle mass, particularly abdominal muscle, indicate how well a patient is responding to treatment. Therefore, physicians use CT to monitor changes in muscle mass throughout the patient's course of treatment. In order to measure the muscle, radiologists must segment and review each CT slice manually, which is a time-consuming task. In this work, we present a fully convolutional neural network (CNN) for the segmentation of abdominal muscle on CT. We achieved a mean Dice similarity coefficient of 0.92, a mean precision of 0.93, and a mean recall of 0.91 in an independent test set. The CNN-based segmentation method can provide an automatic tool for the segmentation of abdominal muscle. As a result, the time required to obtain information about changes in abdominal muscle using the CNN takes a fraction of the time associated with manual segmentation methods and thus can provide a useful tool in the clinical application.

摘要

CT被广泛用于各种疾病的诊断和治疗,包括肌肉量减少的特征描述。在许多情况下,肌肉量的变化,尤其是腹肌的变化,表明患者对治疗的反应情况。因此,医生使用CT来监测患者整个治疗过程中肌肉量的变化。为了测量肌肉,放射科医生必须手动分割并查看每个CT切片,这是一项耗时的任务。在这项工作中,我们提出了一种用于在CT上分割腹肌的全卷积神经网络(CNN)。在一个独立测试集中,我们实现了平均Dice相似系数为0.92、平均精度为0.93和平均召回率为0.91。基于CNN的分割方法可以为腹肌分割提供一种自动工具。结果,使用CNN获取有关腹肌变化信息所需的时间仅为与手动分割方法相关时间的一小部分,因此可以在临床应用中提供一个有用的工具。

相似文献

1
Abdominal muscle segmentation from CT using a convolutional neural network.
Proc SPIE Int Soc Opt Eng. 2020 Feb;11317. doi: 10.1117/12.2549406. Epub 2020 Feb 28.
2
Deep Learning-Based Abdominal Muscle Segmentation on CT Images of Surgical Patient Populations.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12036. doi: 10.1117/12.2611773. Epub 2022 Apr 4.
4
Automatic segmentation of the prostate on CT images using deep learning and multi-atlas fusion.
Proc SPIE Int Soc Opt Eng. 2017 Feb;10133. doi: 10.1117/12.2255755. Epub 2017 Feb 24.
7
Automatic gross tumor segmentation of canine head and neck cancer using deep learning and cross-species transfer learning.
Front Vet Sci. 2023 Mar 21;10:1143986. doi: 10.3389/fvets.2023.1143986. eCollection 2023.
8
Whole liver segmentation based on deep learning and manual adjustment for clinical use in SIRT.
Eur J Nucl Med Mol Imaging. 2020 Nov;47(12):2742-2752. doi: 10.1007/s00259-020-04800-3. Epub 2020 Apr 20.
9
Automatic abdominal multi-organ segmentation using deep convolutional neural network and time-implicit level sets.
Int J Comput Assist Radiol Surg. 2017 Mar;12(3):399-411. doi: 10.1007/s11548-016-1501-5. Epub 2016 Nov 24.
10
Lung tumor segmentation in 4D CT images using motion convolutional neural networks.
Med Phys. 2021 Nov;48(11):7141-7153. doi: 10.1002/mp.15204. Epub 2021 Sep 13.

引用本文的文献

3
Accelerated muscle mass estimation from CT images through transfer learning.
BMC Med Imaging. 2024 Oct 9;24(1):271. doi: 10.1186/s12880-024-01449-4.
4
A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment.
Quant Imaging Med Surg. 2023 Mar 1;13(3):1384-1398. doi: 10.21037/qims-22-330. Epub 2023 Feb 9.
5
Deep Learning-Based Abdominal Muscle Segmentation on CT Images of Surgical Patient Populations.
Proc SPIE Int Soc Opt Eng. 2022 Feb-Mar;12036. doi: 10.1117/12.2611773. Epub 2022 Apr 4.
6
Direct quantification of epistemic and aleatoric uncertainty in 3D U-net segmentation.
J Med Imaging (Bellingham). 2022 May;9(3):034002. doi: 10.1117/1.JMI.9.3.034002. Epub 2022 Jun 8.
7
8
Transfer learning for data-efficient abdominal muscle segmentation with convolutional neural networks.
Med Phys. 2022 May;49(5):3107-3120. doi: 10.1002/mp.15533. Epub 2022 Feb 28.
9
Validation for measurements of skeletal muscle areas using low-dose chest computed tomography.
Sci Rep. 2022 Jan 10;12(1):463. doi: 10.1038/s41598-021-04492-1.

本文引用的文献

1
Generalised Dice Overlap as a Deep Learning Loss Function for Highly Unbalanced Segmentations.
Deep Learn Med Image Anal Multimodal Learn Clin Decis Support (2017). 2017;2017:240-248. doi: 10.1007/978-3-319-67558-9_28. Epub 2017 Sep 9.
2
Deep learning for automated segmentation of pelvic muscles, fat, and bone from CT studies for body composition assessment.
Skeletal Radiol. 2020 Mar;49(3):387-395. doi: 10.1007/s00256-019-03289-8. Epub 2019 Aug 8.
3
Machine Learning for Automatic Paraspinous Muscle Area and Attenuation Measures on Low-Dose Chest CT Scans.
Acad Radiol. 2019 Dec;26(12):1686-1694. doi: 10.1016/j.acra.2019.06.017. Epub 2019 Jul 17.
4
The impact of computed tomography-assessed sarcopenia on outcomes for trauma patients - a systematic review and meta-analysis.
Injury. 2019 Sep;50(9):1565-1576. doi: 10.1016/j.injury.2019.07.001. Epub 2019 Jul 2.
5
Computed Tomography-Assessed Skeletal Muscle Mass as a Predictor of Outcomes in Lung Cancer Surgery.
Ann Thorac Surg. 2019 Nov;108(5):1555-1564. doi: 10.1016/j.athoracsur.2019.04.090. Epub 2019 Jun 19.
7
Automated Abdominal Segmentation of CT Scans for Body Composition Analysis Using Deep Learning.
Radiology. 2019 Mar;290(3):669-679. doi: 10.1148/radiol.2018181432. Epub 2018 Dec 11.
9
A two-step convolutional neural network based computer-aided detection scheme for automatically segmenting adipose tissue volume depicting on CT images.
Comput Methods Programs Biomed. 2017 Jun;144:97-104. doi: 10.1016/j.cmpb.2017.03.017. Epub 2017 Mar 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验