Suppr超能文献

miRNAs 和神经可变多聚腺苷酸化决定处女行为状态。

miRNAs and Neural Alternative Polyadenylation Specify the Virgin Behavioral State.

机构信息

Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA.

Department of Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA.

出版信息

Dev Cell. 2020 Aug 10;54(3):410-423.e4. doi: 10.1016/j.devcel.2020.06.004. Epub 2020 Jun 23.

Abstract

How are diverse regulatory strategies integrated to impose appropriately patterned gene expression that underlie in vivo phenotypes? Here, we reveal how coordinated miRNA regulation and neural-specific alternative polyadenylation (APA) of a single locus controls complex behaviors. Our entry was the unexpected observation that deletion of Bithorax complex (BX-C) miRNAs converts virgin female flies into a subjective post-mated behavioral state, normally induced by seminal proteins following copulation. Strikingly, this behavioral switch is directly attributable to misregulation of homothorax (hth). We localize specific CNS abdominal neurons where de-repressed Hth compromises virgin behavior in BX-C miRNA mutants. Moreover, we use genome engineering to demonstrate that precise mutation of hth 3' UTR sites for BX-C miRNAs or deletion of its neural 3' UTR extension containing most of these sites both induce post-mated behaviors in virgins. Thus, facilitation of miRNA-mediated repression by neural APA is required for virgin females to execute behaviors appropriate to their internal state.

摘要

不同的调控策略是如何整合起来,以实现对体内表型有基础作用的基因表达模式的适当施加呢?在这里,我们揭示了单一基因座的协调 miRNA 调控和神经特异性可变多聚腺苷酸化(APA)如何控制复杂行为。我们的切入点是一个意外的观察结果,即 Bithorax complex(BX-C)miRNAs 的缺失将处女蝇转化为一种主观的交配后行为状态,这种行为通常是由交配后精液蛋白诱导的。引人注目的是,这种行为转变直接归因于同源异型盒(hth)的错误调控。我们定位到特定的中枢神经系统腹部神经元,其中去抑制的 Hth 会破坏 BX-C miRNA 突变体中的处女行为。此外,我们利用基因组工程技术证明,BX-C miRNAs 对 hth 3'UTR 位点的精确突变或删除其包含大多数这些位点的神经 3'UTR 延伸都能诱导处女产生交配后的行为。因此,神经 APA 促进 miRNA 介导的抑制作用,对于处女蝇执行与其内部状态相适应的行为是必需的。

相似文献

1
miRNAs and Neural Alternative Polyadenylation Specify the Virgin Behavioral State.
Dev Cell. 2020 Aug 10;54(3):410-423.e4. doi: 10.1016/j.devcel.2020.06.004. Epub 2020 Jun 23.
2
A double-negative gene regulatory circuit underlies the virgin behavioral state.
Cell Rep. 2021 Jul 6;36(1):109335. doi: 10.1016/j.celrep.2021.109335.
6
Hox miRNA regulation within the Drosophila Bithorax complex: Patterning behavior.
Mech Dev. 2015 Nov;138 Pt 2(0 2):151-159. doi: 10.1016/j.mod.2015.08.006. Epub 2015 Aug 23.
7
Pervasive Behavioral Effects of MicroRNA Regulation in .
Genetics. 2017 Jul;206(3):1535-1548. doi: 10.1534/genetics.116.195776. Epub 2017 May 3.
8
The cis-regulatory logic underlying abdominal Hox-mediated repression versus activation of regulatory elements in Drosophila.
Dev Biol. 2019 Jan 15;445(2):226-236. doi: 10.1016/j.ydbio.2018.11.006. Epub 2018 Nov 20.
9
10
The Effect of Mating and the Male Sex Peptide on Group Behaviour of Post-mated Female Drosophila melanogaster.
Neurochem Res. 2019 Jun;44(6):1508-1516. doi: 10.1007/s11064-019-02722-7. Epub 2019 Jan 19.

引用本文的文献

1
APALORD: An R-based tool for differential alternative polyadenylation analysis of long-read RNA-seq data.
bioRxiv. 2025 Jun 17:2025.06.11.658931. doi: 10.1101/2025.06.11.658931.
2
Differentially expressed miRNAs offer new perspective into cave adaptation of Astyanax mexicanus.
Ann N Y Acad Sci. 2025 Apr;1546(1):173-181. doi: 10.1111/nyas.15300. Epub 2025 Mar 13.
6
Regulation of insect behavior by non-coding RNAs.
Sci China Life Sci. 2024 Jun;67(6):1106-1118. doi: 10.1007/s11427-023-2482-2. Epub 2024 Mar 4.
8
() and Its Predicted miRNAs Involved in Sexual Development and Regulation.
Animals (Basel). 2023 May 30;13(11):1813. doi: 10.3390/ani13111813.
9
Regulation of alternative splicing and polyadenylation in neurons.
Life Sci Alliance. 2023 Oct 4;6(12). doi: 10.26508/lsa.202302000. Print 2023 Dec.

本文引用的文献

1
Alternative cleavage and polyadenylation in health and disease.
Nat Rev Genet. 2019 Oct;20(10):599-614. doi: 10.1038/s41576-019-0145-z. Epub 2019 Jul 2.
2
Elav-Mediated Exon Skipping and Alternative Polyadenylation of the Dscam1 Gene Are Required for Axon Outgrowth.
Cell Rep. 2019 Jun 25;27(13):3808-3817.e7. doi: 10.1016/j.celrep.2019.05.083.
3
The lncRNA male-specific abdominal plays a critical role in Drosophila accessory gland development and male fertility.
PLoS Genet. 2018 Jul 16;14(7):e1007519. doi: 10.1371/journal.pgen.1007519. eCollection 2018 Jul.
4
Deciphering Drosophila female innate behaviors.
Curr Opin Neurobiol. 2018 Oct;52:139-148. doi: 10.1016/j.conb.2018.06.005. Epub 2018 Jun 22.
5
Metazoan MicroRNAs.
Cell. 2018 Mar 22;173(1):20-51. doi: 10.1016/j.cell.2018.03.006.
6
Locally translated mTOR controls axonal local translation in nerve injury.
Science. 2018 Mar 23;359(6382):1416-1421. doi: 10.1126/science.aan1053.
7
Landscape and evolution of tissue-specific alternative polyadenylation across Drosophila species.
Genome Biol. 2017 Nov 30;18(1):229. doi: 10.1186/s13059-017-1358-0.
8
9
General rules for functional microRNA targeting.
Nat Genet. 2016 Dec;48(12):1517-1526. doi: 10.1038/ng.3694. Epub 2016 Oct 24.
10
MicroRNA-encoded behavior in Drosophila.
Science. 2015 Nov 13;350(6262):815-20. doi: 10.1126/science.aad0217. Epub 2015 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验