Suppr超能文献

confinement能使甲烷水合物在低压下生长吗?分子动力学模拟的见解。

Does Confinement Enable Methane Hydrate Growth at Low Pressures? Insights from Molecular Dynamics Simulations.

作者信息

Yu Kai Bin, Yazaydin A Ozgur

机构信息

Department of Chemical Engineering, University College London, London WC1E 7JE, United Kingdom.

出版信息

J Phys Chem C Nanomater Interfaces. 2020 May 21;124(20):11015-11022. doi: 10.1021/acs.jpcc.0c02246. Epub 2020 May 4.

Abstract

Natural methane hydrates are estimated to be the largest source of unexploited hydrocarbon fuel. The ideal conditions for methane hydrate formation are low temperatures and high pressures. On the other hand, recent experimental studies suggest that porous materials, thanks to their confinement effects, can enable methane hydrate formation at milder conditions, although there has not been a consensus on this. A number of studies have investigated methane hydrate growth in confinement by employing molecular simulations; however, these were carried out at either very high pressures or very low temperatures. Therefore, the effects of confinement on methane hydrate growth at milder conditions have not yet been elaborated by molecular simulations. In order to address this, we carried out a systematic study by performing molecular dynamics (MD) simulations of methane water systems. Using a direct phase coexistence approach, microsecond-scale MD simulations in the isobaric-isothermal (NPT) ensemble were performed in order to study the behavior of methane hydrates in the bulk and in confined nanospaces of hydroxylated silica pores at external pressures ranging from 1 to 100 bar and a simulation temperature corresponding to a 2 °C experimental temperature. We validated the combination of the TIP4P/ice water and TraPPE-UA methane models in order to correctly predict the behavior of methane hydrates in accordance to their phase equilibria. We also demonstrated that the dispersion corrections applied to short-range interactions lead to artificially induced hydrate growth. We observed that in the confinement of a hydroxylated silica pore, a convex-shaped methane nanobuble forms, and methane hydrate growth primarily takes place in the center of the pore rather than the surfaces where a thin water layer exists. Most importantly, our study showed that in the nanopores methane hydrate growth can indeed take place at pressures which would be too low for the growth of methane hydrates in the bulk.

摘要

据估计,天然甲烷水合物是未开发碳氢化合物燃料的最大来源。甲烷水合物形成的理想条件是低温和高压。另一方面,最近的实验研究表明,多孔材料由于其限制效应,能够在较温和的条件下促成甲烷水合物的形成,尽管对此尚未达成共识。许多研究通过分子模拟研究了受限环境中甲烷水合物的生长;然而,这些模拟是在极高压力或极低温度下进行的。因此,分子模拟尚未阐明在较温和条件下限制对甲烷水合物生长的影响。为了解决这个问题,我们通过对甲烷水体系进行分子动力学(MD)模拟开展了一项系统研究。采用直接相共存方法,在等压等温(NPT)系综中进行了微秒级MD模拟,以研究在1至100巴的外部压力和对应于2°C实验温度的模拟温度下,甲烷水合物在本体以及羟基化二氧化硅孔隙的受限纳米空间中的行为。我们验证了TIP4P/ice水模型和TraPPE-UA甲烷模型的组合,以便根据其相平衡正确预测甲烷水合物的行为。我们还证明,应用于短程相互作用的色散校正会导致人为诱导的水合物生长。我们观察到,在羟基化二氧化硅孔隙的限制环境中,会形成一个凸形甲烷纳米泡,并且甲烷水合物的生长主要发生在孔隙中心而非存在薄水层的表面。最重要的是,我们的研究表明,在纳米孔中,甲烷水合物确实可以在对于本体中甲烷水合物生长而言过低的压力下生长。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9a/7304911/5187cfed05a4/jp0c02246_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验