Suppr超能文献

经验证的宫颈癌淋巴结转移有限基因预测指标

Validated limited gene predictor for cervical cancer lymph node metastases.

作者信息

Bloomstein Joshua D, von Eyben Rie, Chan Andy, Rankin Erinn B, Fregoso Daniel R, Wang-Chiang Jing, Lee Lisa, Xie Liang-Xi, David Shannon MacLaughlan, Stehr Henning, Esfahani Mohammad S, Giaccia Amato J, Kidd Elizabeth A

机构信息

Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.

Department of Gynecologic Oncology, Santa Clara Valley Medical Center, Fruitdale, CA, USA.

出版信息

Oncotarget. 2020 Jun 16;11(24):2302-2309. doi: 10.18632/oncotarget.27632.

Abstract

PURPOSE

Recognizing the prognostic significance of lymph node (LN) involvement for cervical cancer, we aimed to identify genes that are differentially expressed in LN+ versus LN- cervical cancer and to potentially create a validated predictive gene signature for LN involvement.

MATERIALS AND METHODS

Primary tumor biopsies were collected from 74 cervical cancer patients. RNA was extracted and RNA sequencing was performed. The samples were divided by institution into a training set ( = 57) and a testing set ( = 17). Differentially expressed genes were identified among the training cohort and used to train a Random Forest classifier.

RESULTS

22 genes showed > 1.5 fold difference in expression between the LN+ and LN- groups. Using forward selection 5 genes were identified and, based on the clinical knowledge of these genes and testing of the different combinations, a 2-gene Random Forest model of BIRC3 and CD300LG was developed. The classification accuracy of lymph node (LN) status on the test set was 88.2%, with an Area under the Receiver Operating Characteristic curve (ROC-AUC) of 98.6%.

CONCLUSIONS

We identified a 2 gene Random Forest model of BIRC3 and CD300LG that predicted lymph node involvement in a validation cohort. This validated model, following testing in additional cohorts, could be used to create a reverse transcription-quantitative polymerase chain reaction (RT-qPCR) tool that would be useful for helping to identify patients with LN involvement in resource-limited settings.

摘要

目的

认识到淋巴结(LN)受累对宫颈癌的预后意义,我们旨在鉴定在LN阳性与LN阴性宫颈癌中差异表达的基因,并有可能创建一个经过验证的用于预测LN受累的基因特征。

材料与方法

从74例宫颈癌患者中收集原发性肿瘤活检样本。提取RNA并进行RNA测序。样本按机构分为训练集(n = 57)和测试集(n = 17)。在训练队列中鉴定差异表达基因,并用于训练随机森林分类器。

结果

22个基因在LN阳性和LN阴性组之间的表达差异>1.5倍。通过向前选择鉴定出5个基因,并基于这些基因的临床知识以及对不同组合的测试,开发了一个由BIRC3和CD300LG组成的双基因随机森林模型。测试集上淋巴结(LN)状态的分类准确率为88.2%,受试者操作特征曲线下面积(ROC-AUC)为98.6%。

结论

我们鉴定出一个由BIRC3和CD300LG组成的双基因随机森林模型,该模型在验证队列中预测淋巴结受累情况。在其他队列中进行测试后,这个经过验证的模型可用于创建一个逆转录定量聚合酶链反应(RT-qPCR)工具,这将有助于在资源有限的环境中识别LN受累患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97db/7299532/70d3ced64f31/oncotarget-11-2302-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验