Suppr超能文献

有限差分和积分格式在粘弹性膜浸入边界模拟中用于 Maxwell 粘性应力计算。

Finite-difference and integral schemes for Maxwell viscous stress calculation in immersed boundary simulations of viscoelastic membranes.

机构信息

Bharti School of Engineering, Laurentian University, 935 Ramsey Lake Road, Sudbury, ON, P3E 2C6, Canada.

出版信息

Biomech Model Mechanobiol. 2020 Dec;19(6):2667-2681. doi: 10.1007/s10237-020-01363-y. Epub 2020 Jul 3.

Abstract

The immersed boundary method (IBM) has been frequently utilized to simulate the motion and deformation of biological cells and capsules in various flow situations. Despite the convenience in dealing with flow-membrane interaction, direct implementation of membrane viscosity in IBM suffers severe numerical instability. It has been shown that adding an artificial elastic element in series to the viscous component in the membrane mechanics can efficiently improve the numerical stability in IBM membrane simulations. Recently Li and Zhang (Int J Numer Methods Biomed Eng 35:e3200, 2019) proposed a finite-difference method for calculating membrane viscous stress. In the present paper, two new schemes are developed based on the convolution integral expression of the Maxwell viscoelastic element. We then conduct several tests for the accuracy, stability, and efficiency performances of these three viscous stress schemes. By studying the behavior of a one-dimensional Maxwell element under sinusoidal deformation, we find that a good accuracy can be achieved by selecting an appropriate relaxation time. The twisting sphere tests confirm that, compared to the numerical errors induced by other components in capsule simulations, such as the finite element method for membrane discretization and IBM for flow-membrane interaction, the errors from the viscous stress calculation are negligible. Moreover, extensive simulations are conducted for the dynamic deformation of a spherical capsule in shear flow, using different numerical schemes and various combinations of the artificial spring constants and calculation frequency for the membrane viscous stress calculation. No difference is observed among the results from the three schemes; and these viscous stress schemes require very little extra computation time compared to other components in IBM simulations. The simulation results converge gradually with the increase in the artificial spring stiffness; however, a threshold value exists for the spring stiffness to maintain the numerical stability. The viscous stress calculation frequency has no apparent influence on the calculation results, but a large frequency number can cause the simulation to collapse. We therefore suggest to calculate the membrane viscous stress at each simulation time step, such that a better numerical stability can be achieved. The three numerical schemes have nearly identical performances in all aspects, and they can all be utilized in future IBM simulations of viscoelastic membranes.

摘要

浸入边界法(IBM)常用于模拟各种流动情况下生物细胞和胶囊的运动和变形。尽管在处理流膜相互作用方面很方便,但 IBM 中膜粘度的直接实现会受到严重的数值不稳定性的影响。已经表明,在膜力学中粘性分量串联添加一个人工弹性元件可以有效地提高 IBM 膜模拟中的数值稳定性。最近,Li 和 Zhang(Int J Numer Methods Biomed Eng 35:e3200,2019)提出了一种用于计算膜粘性应力的有限差分方法。在本文中,基于 Maxwell 粘弹性元件的卷积积分表达式,开发了两种新的方案。然后,我们对这三种粘性应力方案的准确性、稳定性和效率性能进行了几个测试。通过研究一维 Maxwell 元件在正弦变形下的行为,我们发现通过选择适当的松弛时间可以获得良好的准确性。扭摆球体测试证实,与胶囊模拟中其他组件(如膜离散化的有限元方法和流膜相互作用的 IBM)引起的数值误差相比,粘性应力计算引起的误差可以忽略不计。此外,还对剪切流中球形胶囊的动态变形进行了广泛的模拟,使用了不同的数值方案和人工弹簧常数以及膜粘性应力计算的计算频率的各种组合。三种方案的结果没有差异;与 IBM 模拟中的其他组件相比,这些粘性应力方案需要的额外计算时间非常少。随着人工弹簧刚度的增加,模拟结果逐渐收敛;但是,存在一个弹簧刚度的阈值来保持数值稳定性。粘性应力计算频率对计算结果没有明显影响,但较大的频率数会导致模拟崩溃。因此,我们建议在每个模拟时间步计算膜粘性应力,以获得更好的数值稳定性。这三种数值方案在各个方面都具有几乎相同的性能,并且都可以用于未来的 IBM 粘弹性膜模拟。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验