Suppr超能文献

基于心脏 CT 的机器学习进行缺血和预后预测。

Ischemia and outcome prediction by cardiac CT based machine learning.

机构信息

Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Heart & Vascular Center, Medical University of South Carolina, Ashley River Tower, 25 Courtenay Drive, Charleston, SC, 29425-2260, USA.

Department of Cardiology, Robert-Bosch-Krankenhaus, Stuttgart, Germany.

出版信息

Int J Cardiovasc Imaging. 2020 Dec;36(12):2429-2439. doi: 10.1007/s10554-020-01929-y. Epub 2020 Jul 4.

Abstract

Cardiac CT using non-enhanced coronary artery calcium scoring (CACS) and coronary CT angiography (cCTA) has been proven to provide excellent evaluation of coronary artery disease (CAD) combining anatomical and morphological assessment of CAD for cardiovascular risk stratification and therapeutic decision-making, in addition to providing prognostic value for the occurrence of adverse cardiac outcome. In recent years, artificial intelligence (AI) and, in particular, the application of machine learning (ML) algorithms, have been promoted in cardiovascular CT imaging for improved decision pathways, risk stratification, and outcome prediction in a more objective, reproducible, and rational manner. AI is based on computer science and mathematics that are based on big data, high performance computational infrastructure, and applied algorithms. The application of ML in daily routine clinical practice may hold potential to improve imaging workflow and to promote better outcome prediction and more effective decision-making in patient management. Moreover, CT represents a field wherein ML may be particularly useful, such as CACS and cCTA. Thus, the purpose of this review is to give a short overview about the contemporary state of ML based algorithms in cardiac CT, as well as to provide clinicians with currently available scientific data on clinical validation and implementation of these algorithms for the prediction of ischemia-specific CAD and cardiovascular outcome.

摘要

心脏 CT 采用非增强冠状动脉钙评分(CACS)和冠状动脉 CT 血管造影(cCTA),已被证明在心血管风险分层和治疗决策方面,除了为不良心脏事件的发生提供预后价值外,还可以结合 CAD 的解剖学和形态学评估,对冠状动脉疾病(CAD)进行出色的评估。近年来,人工智能(AI),特别是机器学习(ML)算法的应用,已在心血管 CT 成像中得到推广,以更客观、可重复和合理的方式改进决策路径、风险分层和结果预测。AI 基于计算机科学和数学,基于大数据、高性能计算基础设施和应用算法。ML 在日常临床实践中的应用可能具有改善成像工作流程以及促进更好的预后预测和更有效的患者管理决策的潜力。此外,CT 是 ML 可能特别有用的领域之一,例如 CACS 和 cCTA。因此,本综述的目的是简要概述基于 ML 的算法在心脏 CT 中的现状,并为临床医生提供目前关于这些算法的临床验证和实施的科学数据,以预测缺血性特定 CAD 和心血管结局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验