Suppr超能文献

氨基酸和肽与无机材料相互作用的实验表征与模拟

Experimental characterization and simulation of amino acid and peptide interactions with inorganic materials.

作者信息

Schwaminger Sebastian, Blank-Shim Silvia Angela, Borkowska-Panek Monika, Anand Priya, Fraga-García Paula, Fink Karin, Wenzel Wolfgang, Berensmeier Sonja

机构信息

Bioseparation Engineering Group Technical University of Munich München Germany.

Institute of Nanotechnology Karlsruhe Institute of Technology Karlsruhe Germany.

出版信息

Eng Life Sci. 2017 Jul 26;18(2):84-100. doi: 10.1002/elsc.201700019. eCollection 2018 Feb.

Abstract

Inspired by nature, many applications and new materials benefit from the interplay of inorganic materials and biomolecules. A fundamental understanding of complex organic-inorganic interactions would improve the controlled production of nanomaterials and biosensors to the development of biocompatible implants for the human body. Although widely exploited in applications, the interaction of amino acids and peptides with most inorganic surfaces is not fully understood. To date, precisely characterizing complex surfaces of inorganic materials and analyzing surface-biomolecule interactions remain challenging both experimentally and computationally. This article reviews several approaches to characterizing biomolecule-surface interactions and illustrates the advantages and disadvantages of the methods presented. First, we explain how the adsorption mechanism of amino acids/peptides to inorganic surfaces can be determined and how thermodynamic and kinetic process constants can be obtained. Second, we demonstrate how this data can be used to develop models for peptide-surface interactions. The understanding and simulation of such interactions constitute a basis for developing molecules with high affinity binding domains in proteins for bioprocess engineering and future biomedical technologies.

摘要

受自然启发,许多应用和新材料受益于无机材料与生物分子的相互作用。对复杂的有机 - 无机相互作用的基本理解将改善纳米材料和生物传感器的可控生产,推动用于人体的生物相容性植入物的发展。尽管在应用中得到广泛利用,但氨基酸和肽与大多数无机表面的相互作用尚未得到充分理解。迄今为止,精确表征无机材料的复杂表面并分析表面 - 生物分子相互作用在实验和计算方面仍然具有挑战性。本文综述了几种表征生物分子 - 表面相互作用的方法,并阐述了所介绍方法的优缺点。首先,我们解释如何确定氨基酸/肽在无机表面的吸附机制以及如何获得热力学和动力学过程常数。其次,我们展示如何利用这些数据开发肽 - 表面相互作用模型。对这种相互作用的理解和模拟构成了在蛋白质中开发具有高亲和力结合域的分子以用于生物过程工程和未来生物医学技术的基础。

相似文献

1
Experimental characterization and simulation of amino acid and peptide interactions with inorganic materials.
Eng Life Sci. 2017 Jul 26;18(2):84-100. doi: 10.1002/elsc.201700019. eCollection 2018 Feb.
3
Surface-Mediated Hydrogen Bonding of Proteinogenic α-Amino Acids on Silicon.
Acc Chem Res. 2016 May 17;49(5):942-51. doi: 10.1021/acs.accounts.5b00534. Epub 2016 Mar 25.
4
Peptide interactions with metal and oxide surfaces.
Acc Chem Res. 2010 Oct 19;43(10):1297-306. doi: 10.1021/ar100017n.
5
Experimental and theoretical tools to elucidate the binding mechanisms of solid-binding peptides.
N Biotechnol. 2019 Sep 25;52:9-18. doi: 10.1016/j.nbt.2019.04.001. Epub 2019 Apr 5.
6
Biomolecule conjugated inorganic nanoparticles for biomedical applications: A review.
Biotechnol Genet Eng Rev. 2024 Dec;40(4):3611-3652. doi: 10.1080/02648725.2022.2147678. Epub 2022 Nov 24.
7
A Review on Recent Patents and Applications of Inorganic Material Binding Peptides.
Recent Pat Nanotechnol. 2017;11(3):168-180. doi: 10.2174/1872210509666161201195458.
8
Insights on the facet specific adsorption of amino acids and peptides toward platinum.
J Chem Inf Model. 2013 Dec 23;53(12):3273-9. doi: 10.1021/ci400630d. Epub 2013 Dec 6.
10
Modelling peptide adsorption energies on gold surfaces with an effective implicit solvent and surface model.
J Colloid Interface Sci. 2022 Jan;605:493-499. doi: 10.1016/j.jcis.2021.07.090. Epub 2021 Jul 21.

引用本文的文献

2
Bare Iron Oxide Nanoparticles as Drug Delivery Carrier for the Short Cationic Peptide Lasioglossin.
Pharmaceuticals (Basel). 2021 Apr 24;14(5):405. doi: 10.3390/ph14050405.
4
Buffer Influence on the Amino Acid Silica Interaction.
Chemphyschem. 2020 Oct 16;21(20):2347-2356. doi: 10.1002/cphc.202000572. Epub 2020 Sep 23.
5
Magnetic One-Step Purification of His-Tagged Protein by Bare Iron Oxide Nanoparticles.
ACS Omega. 2019 Feb 21;4(2):3790-3799. doi: 10.1021/acsomega.8b03348. eCollection 2019 Feb 28.

本文引用的文献

1
Energetics of nanoparticle oxides: interplay between surface energy and polymorphism†.
Geochem Trans. 2003 Nov 18;4:34. doi: 10.1186/1467-4866-4-34. eCollection 2003.
2
Adhesion of lactoferrin and bone morphogenetic protein-2 to a rutile surface: dependence on the surface hydrophobicity.
Biomater Sci. 2014 Aug 30;2(8):1090-1099. doi: 10.1039/c4bm00021h. Epub 2014 May 1.
3
Facet selectivity in gold binding peptides: exploiting interfacial water structure.
Chem Sci. 2015 Sep 1;6(9):5204-5214. doi: 10.1039/c5sc00399g. Epub 2015 Jun 23.
4
Peptide binding to metal oxide nanoparticles.
Faraday Discuss. 2017 Oct 26;204:233-250. doi: 10.1039/c7fd00105c.
5
Immobilization of Cellulase on Magnetic Nanocarriers.
ChemistryOpen. 2016 Apr 29;5(3):183-187. doi: 10.1002/open.201600028. eCollection 2016 Jun.
6
Ligand density quantification on colloidal inorganic nanoparticles.
Analyst. 2016 Dec 19;142(1):11-29. doi: 10.1039/c6an02206e.
7
Binding Preferences of Amino Acids for Gold Nanoparticles: A Molecular Simulation Study.
Langmuir. 2016 Aug 9;32(31):7888-96. doi: 10.1021/acs.langmuir.6b01693. Epub 2016 Jul 27.
8
Adsorption of Amino Acids and Peptides on Metal and Oxide Surfaces in Water Environment: A Synthetic and Prospective Review.
J Phys Chem B. 2016 Jul 28;120(29):7039-52. doi: 10.1021/acs.jpcb.6b05954. Epub 2016 Jul 20.
9
Effect of Electrolyte Concentration on the Stern Layer Thickness at a Charged Interface.
Angew Chem Int Ed Engl. 2016 Mar 7;55(11):3790-4. doi: 10.1002/anie.201512025. Epub 2016 Feb 16.
10
Modeling and simulation of protein-surface interactions: achievements and challenges.
Q Rev Biophys. 2016;49:e4. doi: 10.1017/S0033583515000256.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验