Suppr超能文献

深度学习方法预测使用光学相干断层扫描的视野。

A deep learning approach to predict visual field using optical coherence tomography.

机构信息

Department of Ophthalmology, Pusan National University College of Medicine, Busan, South Korea.

Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea.

出版信息

PLoS One. 2020 Jul 6;15(7):e0234902. doi: 10.1371/journal.pone.0234902. eCollection 2020.

Abstract

We developed a deep learning architecture based on Inception V3 to predict visual field using optical coherence tomography (OCT) imaging and evaluated its performance. Two OCT images, macular ganglion cell-inner plexiform layer (mGCIPL) and peripapillary retinal nerve fibre layer (pRNFL) thicknesses, were acquired and combined. A convolutional neural network architecture was constructed to predict visual field using this combined OCT image. The root mean square error (RMSE) between the actual and predicted visual fields was calculated to evaluate the performance. Globally (the entire visual field area), the RMSE for all patients was 4.79 ± 2.56 dB, with 3.27 dB and 5.27 dB for the normal and glaucoma groups, respectively. The RMSE of the macular region (4.40 dB) was higher than that of the peripheral region (4.29 dB) for all subjects. In normal subjects, the RMSE of the macular region (2.45 dB) was significantly lower than that of the peripheral region (3.11 dB), whereas in glaucoma subjects, the RMSE was higher (5.62 dB versus 5.03 dB, respectively). The deep learning method effectively predicted the visual field 24-2 using the combined OCT image. This method may help clinicians determine visual fields, particularly for patients who are unable to undergo a physical visual field exam.

摘要

我们开发了一种基于 Inception V3 的深度学习架构,用于使用光学相干断层扫描 (OCT) 成像预测视野,并评估其性能。获取并组合了两个 OCT 图像,即黄斑神经节细胞-内丛状层 (mGCIPL) 和视盘周围视网膜神经纤维层 (pRNFL) 厚度。构建了一个卷积神经网络架构,使用这种组合的 OCT 图像来预测视野。通过计算实际和预测视野之间的均方根误差 (RMSE) 来评估性能。在全局范围内(整个视野区域),所有患者的 RMSE 为 4.79 ± 2.56 dB,正常组和青光眼组分别为 3.27 dB 和 5.27 dB。所有受试者的黄斑区域 (4.40 dB) 的 RMSE 均高于周边区域 (4.29 dB)。在正常受试者中,黄斑区域 (2.45 dB) 的 RMSE 明显低于周边区域 (3.11 dB),而在青光眼受试者中,RMSE 更高 (5.62 dB 与 5.03 dB)。深度学习方法有效地使用组合的 OCT 图像预测了 24-2 视野。该方法可能有助于临床医生确定视野,特别是对于无法进行物理视野检查的患者。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d80/7337305/4cd16d6e129b/pone.0234902.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验