Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.
Int J Mol Sci. 2020 Jul 4;21(13):4765. doi: 10.3390/ijms21134765.
Reliable prediction of binding affinities for ligand-receptor complex has been the primary goal of a structure-based drug design process. In this respect, alchemical methods are evolving as a popular choice to predict the binding affinities for biomolecular complexes. However, the highly flexible protein-ligand systems pose a challenge to the accuracy of binding free energy calculations mostly due to insufficient sampling. Herein, integrated computational protocol combining free energy perturbation based absolute binding free energy calculation with free energy landscape method was proposed for improved prediction of binding free energy for flexible protein-ligand complexes. The proposed method is applied to the dataset of various classes of p53-MDM2 (murine double minute 2) inhibitors. The absolute binding free energy calculations for MDMX (murine double minute X) resulted in a mean absolute error value of 0.816 kcal/mol while it is 3.08 kcal/mol for MDM2, a highly flexible protein compared to MDMX. With the integration of the free energy landscape method, the mean absolute error for MDM2 is improved to 1.95 kcal/mol.
可靠地预测配体-受体复合物的结合亲和力一直是基于结构的药物设计过程的主要目标。在这方面,由于缺乏采样,基于热力学的方法作为预测生物分子复合物结合亲和力的一种流行选择正在不断发展。然而,高度灵活的蛋白质-配体系统对结合自由能计算的准确性提出了挑战,主要是由于采样不足。本文提出了一种将基于自由能微扰的绝对结合自由能计算与自由能景观方法相结合的综合计算方案,以提高对柔性蛋白质-配体复合物结合自由能的预测能力。该方法应用于各种类别的 p53-MDM2(鼠双微 2)抑制剂数据集。对 MDMX(鼠双微 X)的绝对结合自由能计算得出的平均绝对误差值为 0.816 kcal/mol,而与 MDMX 相比,高度灵活的 MDM2 的平均绝对误差值为 3.08 kcal/mol。通过整合自由能景观方法,MDM2 的平均绝对误差提高到 1.95 kcal/mol。