Suppr超能文献

将作物生长模型与性状辅助预测相结合可改善对基因型与环境互作的预测。

Combining Crop Growth Modeling With Trait-Assisted Prediction Improved the Prediction of Genotype by Environment Interactions.

作者信息

Robert Pauline, Le Gouis Jacques, Rincent Renaud

机构信息

INRAE, UCA, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France.

出版信息

Front Plant Sci. 2020 Jun 19;11:827. doi: 10.3389/fpls.2020.00827. eCollection 2020.

Abstract

Plant breeders evaluate their selection candidates in multi-environment trials to estimate their performance in contrasted environments. The number of genotype/environment combinations that can be evaluated is strongly constrained by phenotyping costs and by the necessity to limit the evaluation to a few years. Genomic prediction models taking the genotype by environment interactions (GEI) into account can help breeders identify combination of (possibly unphenotyped) genotypes and target environments optimizing the traits under selection. We propose a new prediction approach in which a secondary trait available on both the calibration and the test sets is introduced as an environment specific covariate in the prediction model (trait-assisted prediction, TAP). The originality of this approach is that the phenotyping of the test set for the secondary trait is replaced by crop-growth model (CGM) predictions. So there is no need to sow and phenotype the test set in each environment which is a clear advantage over the classical trait-assisted prediction models. The interest of this approach, called CGM-TAP, is highest if the secondary trait is easy to predict with CGM and strongly related to the target trait in each environment (and thus capturing GEI). We tested CGM-TAP on bread wheat with heading date as secondary trait and grain yield as target trait. Simple CGM-TAP model with a linear effect of heading date resulted in high predictive abilities in three prediction scenarios (sparse testing, or prediction of new genotypes or of new environments). It increased predictive abilities of all reference GEI models, even those involving sophisticated environmental covariates.

摘要

植物育种者在多环境试验中评估其选择的候选品种,以估计它们在不同环境中的表现。可评估的基因型/环境组合数量受到表型分析成本以及将评估限制在几年内的必要性的强烈限制。考虑基因型与环境互作(GEI)的基因组预测模型可以帮助育种者识别(可能未进行表型分析的)基因型与目标环境的组合,从而优化所选性状。我们提出了一种新的预测方法,即在预测模型中引入校准集和测试集上都可用的次要性状作为特定于环境的协变量(性状辅助预测,TAP)。这种方法的独特之处在于,测试集次要性状的表型分析被作物生长模型(CGM)预测所取代。因此,无需在每个环境中对测试集进行播种和表型分析,这相对于经典的性状辅助预测模型具有明显优势。如果次要性状易于用CGM预测且在每个环境中与目标性状密切相关(从而捕获GEI),那么这种称为CGM-TAP的方法的优势就最为明显。我们以抽穗期作为次要性状、籽粒产量作为目标性状,在面包小麦上测试了CGM-TAP。具有抽穗期线性效应的简单CGM-TAP模型在三种预测情景(稀疏测试、新基因型预测或新环境预测)中都具有较高的预测能力。它提高了所有参考GEI模型的预测能力,甚至包括那些涉及复杂环境协变量的模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d1a6/7317015/6d7a30c0aecd/fpls-11-00827-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验