Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Prague West, Czech Republic; Faculty of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague, Czech Republic.
B CUBE - Center for Molecular Bioengineering, TU Dresden, Tatzberg 41, 01307 Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Tatzberg 47/49, 01307 Dresden, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden 01307, Germany.
Curr Biol. 2020 Sep 7;30(17):3342-3351.e5. doi: 10.1016/j.cub.2020.06.039. Epub 2020 Jul 9.
In addition to their force-generating motor domains, kinesin motor proteins feature various accessory domains enabling them to fulfill a variety of functions in the cell. Human kinesin-3, Kif14, localizes to the midbody of the mitotic spindle and is involved in the progression of cytokinesis. The specific motor properties enabling Kif14's cellular functions, however, remain unknown. Here, we show in vitro that the intrinsically disordered N-terminal domain of Kif14 enables unique functional diversity of the kinesin. Using single molecule TIRF microscopy, we found that Kif14 exists either as a diffusible monomer or as processive dimer and that the disordered domain (1) enables diffusibility of the monomeric Kif14, (2) renders the dimeric Kif14 super-processive and enables the kinesin to pass through highly crowded areas, (3) enables robust, autonomous Kif14 tracking of growing microtubule tips, independent of microtubule end-binding (EB) proteins, and (4) is sufficient to enable crosslinking of parallel microtubules and necessary to enable Kif14-driven sliding of antiparallel ones. We explain these features of Kif14 by the observed diffusible interaction of the disordered domain with the microtubule lattice and the observed increased affinity of the disordered domain for GTP-bound tubulin. We suggest that the disordered domain tethers the motor domain to the microtubule providing a diffusible foothold and a regulatory hub, tuning the kinesin's interaction with microtubules. Our findings thus exemplify pliable protein tethering as a fundamental mechanism of molecular motor regulation.
除了产生力的马达结构域,驱动蛋白马达蛋白还具有各种辅助结构域,使其能够在细胞中发挥多种功能。人类驱动蛋白-3(kinesin-3),即 Kif14,定位于有丝分裂纺锤体的中间体,参与胞质分裂的进展。然而,使 Kif14 具有细胞功能的特定马达特性仍然未知。在这里,我们在体外表明,Kif14 的无规卷曲的 N 端结构域使驱动蛋白具有独特的功能多样性。使用单分子全内反射荧光显微镜,我们发现 Kif14 要么作为可扩散的单体存在,要么作为进行性的二聚体存在,并且无规卷曲结构域(1)使单体 Kif14 具有扩散性,(2)使二聚体 Kif14 具有超进行性,并使驱动蛋白能够穿过高度拥挤的区域,(3)使 Kif14 能够自主、稳健地追踪正在生长的微管尖端,而不依赖于微管末端结合(EB)蛋白,(4)足以使平行微管交联,并使 Kif14 驱动的反平行微管滑动成为可能。我们通过观察到无规卷曲结构域与微管晶格的可扩散相互作用以及观察到无规卷曲结构域对 GTP 结合的微管蛋白的亲和力增加,解释了 Kif14 的这些特性。我们认为,无规卷曲结构域将马达结构域与微管连接起来,提供了一个可扩散的立足点和一个调节中心,调节驱动蛋白与微管的相互作用。我们的研究结果因此例证了可弯曲的蛋白连接作为分子马达调节的基本机制。