Suppr超能文献

数学建模为人类 AML 中的生态位竞争提供证据,并可作为改善风险分层的工具。

Mathematical Modeling Provides Evidence for Niche Competition in Human AML and Serves as a Tool to Improve Risk Stratification.

机构信息

Institute of Applied Mathematics and Interdisciplinary Center for Scientific Computing (IWR), Heidelberg University, Heidelberg, Germany.

Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.

出版信息

Cancer Res. 2020 Sep 15;80(18):3983-3992. doi: 10.1158/0008-5472.CAN-20-0283. Epub 2020 Jul 10.

Abstract

Acute myeloid leukemia (AML) is a stem cell-driven malignant disease. There is evidence that leukemic stem cells (LSC) interact with stem cell niches and outcompete hematopoietic stem cells (HSC). The impact of this interaction on the clinical course of the disease remains poorly understood. We developed and validated a mathematical model of stem cell competition in the human HSC niche. Model simulations predicted how processes in the stem cell niche affect the speed of disease progression. Combining the mathematical model with data of individual patients, we quantified the selective pressure LSCs exert on HSCs and demonstrated the model's prognostic significance. A novel model-based risk-stratification approach allowed extraction of prognostic information from counts of healthy and malignant cells at the time of diagnosis. This model's feasibility was demonstrable based on a cohort of patients with ALDH-rare AML and shows that the model-based risk stratification is an independent predictor of disease-free and overall survival. This proof-of-concept study shows how model-based interpretation of patient data can improve prognostic scoring and contribute to personalized medicine. SIGNIFICANCE: Combining a novel mathematical model of the human hematopoietic stem cell niche with individual patient data enables quantification of properties of leukemic stem cells and improves risk stratification in acute myeloid leukemia.

摘要

急性髓系白血病(AML)是一种由干细胞驱动的恶性疾病。有证据表明,白血病干细胞(LSC)与干细胞龛相互作用,并与造血干细胞(HSC)竞争。这种相互作用对疾病临床过程的影响仍知之甚少。我们开发并验证了人类 HSC 龛位中干细胞竞争的数学模型。模型模拟预测了干细胞龛中的过程如何影响疾病进展的速度。将数学模型与个体患者的数据相结合,我们量化了 LSC 对 HSC 的选择压力,并证明了该模型的预后意义。一种新的基于模型的风险分层方法可以从诊断时健康和恶性细胞的计数中提取预后信息。该模型基于 ALDH-罕见 AML 患者队列的可行性证明,表明基于模型的风险分层是无病生存和总生存的独立预测因子。这项概念验证研究表明,如何通过基于模型的患者数据分析来改善预后评分并有助于实现个性化医疗。意义:将人类造血干细胞龛的新型数学模型与个体患者数据相结合,能够量化白血病干细胞的特性,并改善急性髓系白血病的风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验