Suppr超能文献

一种用于估计iCub机器人头部姿态的片上脉冲神经网络。

An On-chip Spiking Neural Network for Estimation of the Head Pose of the iCub Robot.

作者信息

Kreiser Raphaela, Renner Alpha, Leite Vanessa R C, Serhan Baris, Bartolozzi Chiara, Glover Arren, Sandamirskaya Yulia

机构信息

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Zurich, Switzerland.

Lincoln Centre for Autonomous Systems, University of Lincoln, Lincoln, United Kingdom.

出版信息

Front Neurosci. 2020 Jun 23;14:551. doi: 10.3389/fnins.2020.00551. eCollection 2020.

Abstract

In this work, we present a neuromorphic architecture for head pose estimation and scene representation for the humanoid iCub robot. The spiking neuronal network is fully realized in Intel's neuromorphic research chip, Loihi, and precisely integrates the issued motor commands to estimate the iCub's head pose in a neuronal path-integration process. The neuromorphic vision system of the iCub is used to correct for drift in the pose estimation. Positions of objects in front of the robot are memorized using on-chip synaptic plasticity. We present real-time robotic experiments using 2 degrees of freedom (DoF) of the robot's head and show precise path integration, visual reset, and object position learning on-chip. We discuss the requirements for integrating the robotic system and neuromorphic hardware with current technologies.

摘要

在这项工作中,我们提出了一种用于人形iCub机器人头部姿态估计和场景表示的神经形态架构。脉冲神经网络在英特尔的神经形态研究芯片Loihi中完全实现,并在神经路径积分过程中精确整合发出的电机命令以估计iCub的头部姿态。iCub的神经形态视觉系统用于校正姿态估计中的漂移。使用片上突触可塑性来记忆机器人前方物体的位置。我们展示了使用机器人头部的2个自由度(DoF)进行的实时机器人实验,并展示了精确的路径积分、视觉重置和片上物体位置学习。我们讨论了将机器人系统和神经形态硬件与当前技术集成的要求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fcf4/7325709/707db7a4370d/fnins-14-00551-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验