Viereck Janika, Bührke Anne, Foinquinos Ariana, Chatterjee Shambhabi, Kleeberger Jan A, Xiao Ke, Janssen-Peters Heike, Batkai Sandor, Ramanujam Deepak, Kraft Theresia, Cebotari Serghei, Gueler Faikah, Beyer Andreas M, Schmitz Jessica, Bräsen Jan H, Schmitto Jan D, Gyöngyösi Mariann, Löser Alexandra, Hirt Marc N, Eschenhagen Thomas, Engelhardt Stefan, Bär Christian, Thum Thomas
Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
Cardior Pharmaceuticals GmbH, Hannover Medical School Campus, Feodor-Lynen-Str. 15, Hannover 30625, Germany.
Eur Heart J. 2020 Sep 21;41(36):3462-3474. doi: 10.1093/eurheartj/ehaa519.
Pathological cardiac remodelling and subsequent heart failure represents an unmet clinical need. Long non-coding RNAs (lncRNAs) are emerging as crucial molecular orchestrators of disease processes, including that of heart diseases. Here, we report on the powerful therapeutic potential of the conserved lncRNA H19 in the treatment of pathological cardiac hypertrophy.
Pressure overload-induced left ventricular cardiac remodelling revealed an up-regulation of H19 in the early phase but strong sustained repression upon reaching the decompensated phase of heart failure. The translational potential of H19 is highlighted by its repression in a large animal (pig) model of left ventricular hypertrophy, in diseased human heart samples, in human stem cell-derived cardiomyocytes and in human engineered heart tissue in response to afterload enhancement. Pressure overload-induced cardiac hypertrophy in H19 knock-out mice was aggravated compared to wild-type mice. In contrast, vector-based, cardiomyocyte-directed gene therapy using murine and human H19 strongly attenuated heart failure even when cardiac hypertrophy was already established. Mechanistically, using microarray, gene set enrichment analyses and Chromatin ImmunoPrecipitation DNA-Sequencing, we identified a link between H19 and pro-hypertrophic nuclear factor of activated T cells (NFAT) signalling. H19 physically interacts with the polycomb repressive complex 2 to suppress H3K27 tri-methylation of the anti-hypertrophic Tescalcin locus which in turn leads to reduced NFAT expression and activity.
H19 is highly conserved and down-regulated in failing hearts from mice, pigs and humans. H19 gene therapy prevents and reverses experimental pressure-overload-induced heart failure. H19 acts as an anti-hypertrophic lncRNA and represents a promising therapeutic target to combat pathological cardiac remodelling.
病理性心脏重塑及随后的心力衰竭是尚未满足的临床需求。长链非编码RNA(lncRNA)正成为包括心脏病在内的疾病过程的关键分子调控因子。在此,我们报告保守的lncRNA H19在治疗病理性心脏肥大方面具有强大的治疗潜力。
压力超负荷诱导的左心室心脏重塑显示,H19在早期上调,但在心力衰竭失代偿期受到强烈持续抑制。H19在左心室肥大的大型动物(猪)模型、患病人类心脏样本、人类干细胞衍生的心肌细胞以及响应后负荷增强的人类工程心脏组织中均受到抑制,凸显了其翻译潜力。与野生型小鼠相比,H19基因敲除小鼠中压力超负荷诱导的心脏肥大更为严重。相反,使用鼠源和人源H19进行基于载体的心肌细胞定向基因治疗,即使在心脏肥大已经形成时,也能显著减轻心力衰竭。从机制上讲,通过微阵列、基因集富集分析和染色质免疫沉淀DNA测序,我们发现了H19与活化T细胞核因子(NFAT)促肥大信号之间的联系。H19与多梳抑制复合物2发生物理相互作用,以抑制抗肥大的特斯卡林基因座的H3K27三甲基化,进而导致NFAT表达和活性降低。
H19在小鼠、猪和人类的衰竭心脏中高度保守且下调。H19基因治疗可预防和逆转实验性压力超负荷诱导的心力衰竭。H19作为一种抗肥大lncRNA,是对抗病理性心脏重塑的一个有前景的治疗靶点。