School of Mechanical Engineering, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK.
Lab Chip. 2020 Aug 21;20(16):2954-2964. doi: 10.1039/d0lc00239a. Epub 2020 Jul 15.
The clean and reproducible conditions provided by microfluidic devices are ideal sample environments for in situ analyses of chemical and biochemical reactions and assembly processes. However, the small size of microchannels makes investigating the crystallization of poorly soluble materials on-chip challenging due to crystal nucleation and growth that result in channel fouling and blockage. Here, we demonstrate a reusable insert-based microfluidic platform for serial X-ray diffraction analysis and examine scale formation in response to continuous and segmented flow configurations across a range of temperatures. Under continuous flow, scale formation on the reactor walls begins almost immediately on mixing of the crystallizing species, which over time results in occlusion of the channel. Depletion of ions at the start of the channel results in reduced crystallization towards the end of the channel. Conversely, segmented flow can control crystallization, so it occurs entirely within the droplet. Consequently, the spatial location within the channel represents a temporal point in the crystallization process. Whilst each method can provide useful crystallographic information, time-resolved information is lost when reactor fouling occurs and changes the solution conditions with time. The flow within a single device can be manipulated to give a broad range of information addressing surface interaction or solution crystallization.
微流控装置提供的清洁且可重复的条件是进行化学和生化反应以及组装过程的原位分析的理想样本环境。然而,由于微通道的小尺寸,研究难溶性物质在芯片上的结晶具有挑战性,因为结晶核的形成和生长会导致通道堵塞和堵塞。在这里,我们展示了一种基于可重复使用的插入式微流控平台,用于连续的 X 射线衍射分析,并研究了在一系列温度下连续流和分段流配置下的成核情况。在连续流中,在混合结晶物质时,反应器壁上的结垢几乎立即开始,随着时间的推移,这会导致通道堵塞。通道起始处离子的耗尽导致通道末端结晶减少。相反,分段流可以控制结晶,因此结晶完全发生在液滴内。因此,通道内的空间位置代表结晶过程中的时间点。虽然每种方法都可以提供有用的晶体学信息,但当反应器结垢发生并且随着时间的推移改变溶液条件时,会丢失时间分辨信息。可以操纵单个装置内的流动,以提供广泛的信息,用于解决表面相互作用或溶液结晶问题。