Suppr超能文献

具有人口统计学可变性的实值 SDE 和非负 SDE 群体模型。

On real-valued SDE and nonnegative-valued SDE population models with demographic variability.

机构信息

Department of Mathematics and Statistics, Texas Tech University, Lubbock, TX, 79409, USA.

School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287, USA.

出版信息

J Math Biol. 2020 Aug;81(2):487-515. doi: 10.1007/s00285-020-01516-8. Epub 2020 Jul 16.

Abstract

Population dynamics with demographic variability is frequently studied using discrete random variables with continuous-time Markov chain (CTMC) models. An approximation of a CTMC model using continuous random variables can be derived in a straightforward manner by applying standard methods based on the reaction rates in the CTMC model. This leads to a system of Itô stochastic differential equations (SDEs) which generally have the form [Formula: see text] where [Formula: see text] is the population vector of random variables, [Formula: see text] is the drift vector, and G is the diffusion matrix. In some problems, the derived SDE model may not have real-valued or nonnegative solutions for all time. For such problems, the SDE model may be declared infeasible. In this investigation, new systems of SDEs are derived with real-valued solutions and with nonnegative solutions. To derive real-valued SDE models, reaction rates are assumed to be nonnegative for all time with negative reaction rates assigned probability zero. This biologically realistic assumption leads to the derivation of real-valued SDE population models. However, small but negative values may still arise for a real-valued SDE model. This is due to the magnitudes of certain problem-dependent diffusion coefficients when population sizes are near zero. A slight modification of the diffusion coefficients when population sizes are near zero ensures that a real-valued SDE model has a nonnegative solution, yet maintains the integrity of the SDE model when sizes are not near zero. Several population dynamic problems are examined to illustrate the methodology.

摘要

人口动态学中,具有人口统计学变异性的问题经常使用具有连续时间马尔可夫链 (CTMC) 模型的离散随机变量来研究。通过应用基于 CTMC 模型中反应速率的标准方法,可以直接推导出使用连续随机变量的 CTMC 模型的近似值。这导致了一个伊托随机微分方程 (SDE) 系统,其通常具有以下形式:[公式:见正文],其中[公式:见正文]是随机变量的种群向量,[公式:见正文]是漂移向量,G 是扩散矩阵。在某些问题中,推导出的 SDE 模型可能不是所有时间都具有实值或非负解。对于这样的问题,SDE 模型可能被宣布不可行。在这项研究中,推导出了具有实值解和非负解的新 SDE 系统。为了推导出实值 SDE 模型,假设反应速率在所有时间内都是非负的,而负反应速率的概率为零。这种生物学上合理的假设导致了实值 SDE 种群模型的推导。然而,对于实值 SDE 模型,仍然可能出现很小但为负的值。这是由于当种群数量接近零时,某些依赖于问题的扩散系数的大小。当种群数量接近零时,对扩散系数进行微小修改可以确保实值 SDE 模型具有非负解,同时在种群数量不接近零时保持 SDE 模型的完整性。研究了几个种群动态问题来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验