Suppr超能文献

使用直接参数重建进行神经递质传递的 PET 成像。

PET imaging of neurotransmission using direct parametric reconstruction.

机构信息

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.

出版信息

Neuroimage. 2020 Nov 1;221:117154. doi: 10.1016/j.neuroimage.2020.117154. Epub 2020 Jul 15.

Abstract

Receptor ligand-based dynamic Positron Emission Tomography (PET) permits the measurement of neurotransmitter release in the human brain. For single-scan paradigms, the conventional method of estimating changes in neurotransmitter levels relies on fitting a pharmacokinetic model to activity concentration histories extracted after PET image reconstruction. However, due to the statistical fluctuations of activity concentration data at the voxel scale, parametric images computed using this approach often exhibit low signal-to-noise ratio, impeding characterization of neurotransmitter release. Numerous studies have shown that direct parametric reconstruction (DPR) approaches, which combine image reconstruction and kinetic analysis in a unified framework, can improve the signal-to-noise ratio of parametric mapping. However, there is little experience with DPR in imaging of neurotransmission and the performance of the approach in this application has not been evaluated before in humans. In this report, we present and evaluate a DPR methodology that computes 3-D distributions of ligand transport, binding potential (BP) and neurotransmitter release magnitude (γ) from a dynamic sequence of PET sinograms. The technique employs the linear simplified reference region model (LSRRM) of Alpert et al. (2003), which represents an extension of the simplified reference region model that incorporates time-varying binding parameters due to radioligand displacement by release of neurotransmitter. Estimation of parametric images is performed by gradient-based optimization of a Poisson log-likelihood function incorporating LSRRM kinetics and accounting for the effects of head movement, attenuation, detector sensitivity, random and scattered coincidences. A C-raclopride simulation study showed that the proposed approach substantially reduces the bias and variance of voxel-wise γ estimates as compared to standard methods. Moreover, simulations showed that detection of release could be made more reliable and/or conducted using a smaller sample size using the proposed DPR estimator. Likewise, images of BP computed using DPR had substantially improved bias and variance properties. Application of the method in human subjects was demonstrated using C-raclopride dynamic scans and a reward task, confirming the improved quality of the estimated parametric images using the proposed approach.

摘要

基于受体配体的动态正电子发射断层扫描(PET)允许测量人类大脑中的神经递质释放。对于单扫描范式,估计神经递质水平变化的传统方法依赖于将药代动力学模型拟合到 PET 图像重建后提取的活性浓度历史记录。然而,由于活性浓度数据在体素尺度上的统计波动,使用这种方法计算的参数图像通常表现出低信噪比,阻碍了神经递质释放的特征描述。许多研究表明,直接参数重建(DPR)方法,它将图像重建和动力学分析结合在一个统一的框架中,可以提高参数映射的信噪比。然而,在神经传递成像中,DPR 的经验很少,并且该方法在人类中的性能以前没有得到评估。在本报告中,我们提出并评估了一种 DPR 方法,该方法从动态 PET 正弦图序列中计算配体转运、结合潜力(BP)和神经递质释放幅度(γ)的 3D 分布。该技术采用 Alpert 等人的线性简化参考区域模型(LSRRM)(2003),它是简化参考区域模型的扩展,该模型结合了由于神经递质释放导致放射性配体位移引起的时变结合参数。通过基于梯度的优化来估计参数图像,该优化使用包含 LSRRM 动力学的泊松对数似然函数,并考虑头动、衰减、探测器灵敏度、随机和散射符合的影响。C-raclopride 模拟研究表明,与标准方法相比,所提出的方法大大降低了体素级γ估计的偏差和方差。此外,模拟表明,使用所提出的 DPR 估计器可以更可靠地进行释放检测,或者使用更小的样本量进行检测。同样,使用 DPR 计算的 BP 图像具有大大改善的偏差和方差特性。使用 C-raclopride 动态扫描和奖励任务证明了该方法在人体中的应用,证实了使用所提出的方法可以改善估计的参数图像的质量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5daf/7800040/922c92898b90/nihms-1657522-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验