Institut Pasteur de Montevideo, Mataojo 2020, Montevideo 11400, Uruguay.
Escuela de Medicina, Universidad de Talca, 1 Poniente 1141, Talca 3460000, Chile.
J Chem Inf Model. 2020 Aug 24;60(8):3935-3943. doi: 10.1021/acs.jcim.0c00160. Epub 2020 Aug 4.
Although molecular dynamics simulations allow for the study of interactions among virtually all biomolecular entities, metal ions still pose significant challenges in achieving an accurate structural and dynamical description of many biological assemblies, particularly to coarse-grained (CG) models. Although the reduced computational cost of CG methods often makes them the technique of choice for the study of large biomolecular systems, the parameterization of metal ions is still very crude or not available for the vast majority of CG force fields. Here, we show that incorporating statistical data retrieved from the Protein Data Bank (PDB) to set specific Lennard-Jones interactions can produce structurally accurate CG molecular dynamics simulations using the SIRAH force field. We provide a set of interaction parameters for calcium, magnesium, and zinc ions, which cover more than 80% of the metal-bound structures reported in the PDB. Simulations performed on several proteins and DNA systems show that it is possible to preclude the use of topological constraints by modifying specific Lennard-Jones interactions.
尽管分子动力学模拟允许研究几乎所有生物分子实体之间的相互作用,但金属离子在实现许多生物组装体的准确结构和动力学描述方面仍然存在重大挑战,特别是对于粗粒(CG)模型。尽管 CG 方法的计算成本降低通常使其成为研究大型生物分子系统的首选技术,但金属离子的参数化仍然非常粗糙,或者大多数 CG 力场都无法提供。在这里,我们表明,通过从蛋白质数据库(PDB)中检索统计数据来设置特定的 Lennard-Jones 相互作用,可以使用 SIRAH 力场生成结构准确的 CG 分子动力学模拟。我们提供了一组钙、镁和锌离子的相互作用参数,涵盖了 PDB 中报告的超过 80%的金属结合结构。在几个蛋白质和 DNA 系统上进行的模拟表明,通过修改特定的 Lennard-Jones 相互作用,可以避免使用拓扑约束。