Suppr超能文献

基于机器学习的胰腺癌 p53 状态、PD-L1 表达和预后的放射组学预测。

Radiogenomics for predicting p53 status, PD-L1 expression, and prognosis with machine learning in pancreatic cancer.

机构信息

Division of Hepato-Biliary-Pancreatic Surgery, Chiba Cancer Center, 666-2 Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan.

Division of Gastroenterological Surgery, Chiba Cancer Center, 666-2 Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan.

出版信息

Br J Cancer. 2020 Oct;123(8):1253-1261. doi: 10.1038/s41416-020-0997-1. Epub 2020 Jul 21.

Abstract

BACKGROUND

Radiogenomics is an emerging field that integrates "Radiomics" and "Genomics". In the current study, we aimed to predict the genetic information of pancreatic tumours in a simple, inexpensive, and non-invasive manner, using cancer imaging analysis and radiogenomics. We focused on p53 mutations, which are highly implicated in pancreatic ductal adenocarcinoma (PDAC), and PD-L1, a biomarker for immune checkpoint inhibitor-based therapies.

METHODS

Overall, 107 patients diagnosed with PDAC were retrospectively examined. The relationship between p53 mutations as well as PD-L1 abnormal expression and clinicopathological factors was investigated using immunohistochemistry. Imaging features (IFs) were extracted from CT scans and were used to create prediction models of p53 and PD-L1 status.

RESULTS

We found that p53 and PD-L1 are significant independent prognostic factors (P = 0.008, 0.013, respectively). The area under the curve for p53 and PD-L1 predictive models was 0.795 and 0.683, respectively. Radiogenomics-predicted p53 mutations were significantly associated with poor prognosis (P = 0.015), whereas the predicted abnormal expression of PD-L1 was not significant (P = 0.096).

CONCLUSIONS

Radiogenomics could predict p53 mutations and in turn the prognosis of PDAC patients. Hence, prediction of genetic information using radiogenomic analysis may aid in the development of precision medicine.

摘要

背景

放射组学是一个新兴的领域,它将“放射组学”和“基因组学”相结合。在目前的研究中,我们旨在使用癌症成像分析和放射组学,以简单、廉价和非侵入性的方式预测胰腺肿瘤的遗传信息。我们重点研究了 p53 突变,p53 突变与胰腺导管腺癌(PDAC)高度相关,PD-L1 是免疫检查点抑制剂治疗的生物标志物。

方法

总共回顾性检查了 107 名被诊断为 PDAC 的患者。使用免疫组织化学方法研究了 p53 突变以及 PD-L1 异常表达与临床病理因素之间的关系。从 CT 扫描中提取成像特征(IF),并用于创建 p53 和 PD-L1 状态的预测模型。

结果

我们发现 p53 和 PD-L1 是显著的独立预后因素(P=0.008,0.013)。p53 和 PD-L1 预测模型的曲线下面积分别为 0.795 和 0.683。放射组学预测的 p53 突变与预后不良显著相关(P=0.015),而预测的 PD-L1 异常表达则不显著(P=0.096)。

结论

放射组学可以预测 p53 突变,进而预测 PDAC 患者的预后。因此,使用放射组学分析预测遗传信息可能有助于精准医学的发展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9093/7555500/ad3b9d75ea85/41416_2020_997_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验