Suppr超能文献

石松属植物中一个进化上原始且独特的生长素代谢途径。

An Evolutionarily Primitive and Distinct Auxin Metabolism in the Lycophyte Selaginella moellendorffii.

机构信息

Department of Bioregulation and Biointeraction, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan.

Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8509 Japan.

出版信息

Plant Cell Physiol. 2020 Oct 1;61(10):1724-1732. doi: 10.1093/pcp/pcaa098.

Abstract

Auxin is a key regulator of plant growth and development. Indole-3-acetic acid (IAA), a plant auxin, is mainly produced from tryptophan via indole-3-pyruvate (IPA) in both bryophytes and angiosperms. Angiosperms have multiple, well-documented IAA inactivation pathways, involving conjugation to IAA-aspartate (IAA-Asp)/glutamate by the GH3 auxin-amido synthetases, and oxidation to 2-oxindole-3-acetic acid (oxIAA) by the DAO proteins. However, IAA biosynthesis and inactivation processes remain elusive in lycophytes, an early lineage of spore-producing vascular plants. In this article, we studied IAA biosynthesis and inactivation in the lycophyte Selaginella moellendorffii. We demonstrate that S. moellendorffii mainly produces IAA from the IPA pathway for the regulation of root growth and response to high temperature, similar to the angiosperm Arabidopsis. However, S. moellendorffii exhibits a unique IAA metabolite profile with high IAA-Asp and low oxIAA levels, distinct from Arabidopsis and the bryophyte Marchantia polymorpha, suggesting that the GH3 family is integral for IAA homeostasis in the lycophytes. The DAO homologs in S. moellendorffii share only limited similarity to the well-characterized rice and Arabidopsis DAO proteins. We therefore suggest that these enzymes may have a limited role in IAA homeostasis in S. moellendorffii compared to angiosperms. We provide new insights into the functional diversification of auxin metabolic genes in the evolution of land plants.

摘要

植物生长素是植物生长和发育的关键调节剂。吲哚-3-乙酸(IAA),一种植物生长素,主要由色氨酸通过吲哚-3-丙酮酸(IPA)在苔藓植物和被子植物中产生。被子植物有多种经过充分记录的 IAA 失活途径,涉及到通过 GH3 生长素酰胺合成酶与 IAA-天冬氨酸(IAA-Asp)/谷氨酸的共轭,以及通过 DAO 蛋白氧化为 2-氧吲哚-3-乙酸(oxIAA)。然而,在石松类植物(一种产生孢子的维管植物的早期谱系)中,生长素的生物合成和失活过程仍然难以捉摸。在本文中,我们研究了石松属植物 Selaginella moellendorffii 中的生长素生物合成和失活。我们证明,S. moellendorffii 主要通过 IPA 途径产生 IAA,以调节根的生长和对高温的反应,这与被子植物拟南芥相似。然而,S. moellendorffii 表现出独特的 IAA 代谢物谱,具有高 IAA-Asp 和低 oxIAA 水平,与拟南芥和苔藓植物 Marchantia polymorpha 不同,这表明 GH3 家族对于石松类植物中的 IAA 动态平衡是不可或缺的。S. moellendorffii 中的 DAO 同源物与经过充分研究的水稻和拟南芥 DAO 蛋白仅有有限的相似性。因此,我们认为与被子植物相比,这些酶在 S. moellendorffii 中的 IAA 动态平衡中可能发挥有限的作用。我们为生长素代谢基因在陆地植物进化中的功能多样化提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验