Suppr超能文献

基于拉格朗日方程和实验的含间隙可调平面多体机械系统数值与动态误差分析

Numerical and Dynamic Errors Analysis of Planar Multibody Mechanical Systems With Adjustable Clearance Joints Based on Lagrange Equations and Experiment.

作者信息

Li Hui, Xie Jin, Wei Wei

机构信息

School of Mechanical Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan, China.

出版信息

J Comput Nonlinear Dyn. 2020 Aug 1;15(8):081001. doi: 10.1115/1.4047135. Epub 2020 May 29.

Abstract

For theoretical study and engineering application, it is necessary to provide an accurate and simple dynamical model to simulate the multibody mechanical systems with clearance joints and it is also the subject of this article. Based on Lagrange equations of the first kind, a different numerical methodology, the length and rotation angle of the clearance joints are looked as independent coordinates for the first time, is presented in detail. The slider-crank mechanism, with a single or double adjustable revolute clearance joints, is used as a numerical model. A test rig and a simulink model, fully in accordance with the numerical model, are used to measure the velocity, displacement, and acceleration. The numerical results tally with experimental and simulink results reveal that the new methodology, presented in this paper, provides a correct approach to build the dynamical equations of mechanism with clearance joints. Lyapunov exponent is used to analyze the motion status, chaotic or periodic, of the slider. Based on data points, mean absolute deviation (MAD) is applied to judge the dynamical errors, displacement, velocity, and acceleration, of the slider due to clearance joints. With the help of Lyapunov exponent and MAD, the results indicated that various clearance sizes and drive speeds can change the dynamical behaviors of the slider, which is complex but can be predicted in some way.

摘要

对于理论研究和工程应用而言,提供一个准确且简单的动力学模型来模拟带有间隙关节的多体机械系统是很有必要的,这也是本文的主题。基于第一类拉格朗日方程,详细介绍了一种不同的数值方法,即首次将间隙关节的长度和旋转角度视为独立坐标。具有单个或双个可调节旋转间隙关节的曲柄滑块机构被用作数值模型。使用一个完全符合该数值模型的试验台和一个Simulink模型来测量速度、位移和加速度。数值结果与实验结果及Simulink结果相符,表明本文提出的新方法为建立带有间隙关节的机构动力学方程提供了一种正确的途径。李雅普诺夫指数用于分析滑块的运动状态,即混沌或周期性的。基于数据点,应用平均绝对偏差(MAD)来判断由于间隙关节导致的滑块在位移、速度和加速度方面的动力学误差。借助李雅普诺夫指数和MAD,结果表明各种间隙尺寸和驱动速度会改变滑块的动力学行为,这种行为虽然复杂但在某种程度上是可以预测的。

相似文献

4
6
Chaotic dynamics of one-dimensional systems with periodic boundary conditions.具有周期边界条件的一维系统的混沌动力学
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062918. doi: 10.1103/PhysRevE.90.062918. Epub 2014 Dec 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验