Souri Amir H, Wang Huiqun, González Abad Gonzalo, Liu Xiong, Chance Kelly
Harvard-Smithsonian Center for Astrophysics Cambridge MA USA.
J Geophys Res Atmos. 2020 Apr 16;125(7):e2019JD031941. doi: 10.1029/2019JD031941.
The primary focus of this study is to understand the contribution from excess moisture from crop transpiration to the severity of a heat wave episode that hit the Midwestern U.S. from 16 to 20 July 2011. To elucidate this, we first provide an optimal estimate of the transpiration water vapor flux using satellite total column water vapor retrievals whose accuracy and precision are characterized using independent observations. The posterior transpiration flux is estimated using a local ensemble transform Kalman filter that employs a mesoscale weather model as the forward model. The new estimation suggests that the prior values of transpiration flux from crops are biased high by 15%. We further use the constrained flux to examine the sensitivity of meteorology to the contributions from crops. Over the agricultural areas during daytime, elevated moisture (up to 40%) from crops not only increases humidity (thus the heat index) but also provides a positive radiative forcing by increasing downward longwave radiation (13 ± 4 W m) that results in even higher surface air temperature (+0.4 °C). Consequently, we find that the elevated moisture generally provides positive feedback to aggravate the heat wave, with daytime enhancements of heat index by as large as 3.3 ± 0.8 °C. Due to a strong diurnal cycle in the transpiration, the feedback tends to be stronger in the afternoon (up to 5 °C) and weaker at night. Results offer a potential basis for designing mitigation strategies for the effect of transpiration from agriculture in the future, in addition to improving the estimation of canopy transpiration.
本研究的主要重点是了解2011年7月16日至20日袭击美国中西部的热浪事件严重程度中作物蒸腾产生的多余水分所起的作用。为阐明这一点,我们首先利用卫星总柱水汽反演数据提供蒸腾水汽通量的最优估计值,其精度和准确性通过独立观测来表征。利用以中尺度天气模型作为正演模型的局部集合变换卡尔曼滤波器估计后验蒸腾通量。新的估计表明,作物蒸腾通量的先验值偏高15%。我们进一步使用约束通量来检验气象学对作物贡献的敏感性。在白天的农业区域,作物产生的湿度升高(高达40%)不仅增加了湿度(从而增加了热指数),还通过增加向下的长波辐射(13±4W/m²)提供了正辐射强迫,导致地表气温进一步升高(+0.4°C)。因此,我们发现升高的湿度通常会提供正反馈,加剧热浪,白天热指数增强高达3.3±0.8°C。由于蒸腾作用存在强烈的日循环,这种反馈在下午往往更强(高达5°C),而在夜间较弱。研究结果除了改进冠层蒸腾估计外,还为未来设计减轻农业蒸腾作用影响的缓解策略提供了潜在依据。