Suppr超能文献

通过信息论量化指标估算亚马逊雨林中的生态声学活动。

Estimating ecoacoustic activity in the Amazon rainforest through Information Theory quantifiers.

机构信息

Instituto de Computação (IComp), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brasil.

Instituto de Física, Universidade Federal de Alagoas (UFAL), Maceió, Alagoas, Brasil.

出版信息

PLoS One. 2020 Jul 27;15(7):e0229425. doi: 10.1371/journal.pone.0229425. eCollection 2020.

Abstract

Automatic monitoring of biodiversity by acoustic sensors has become an indispensable tool to assess environmental stress at an early stage. Due to the difficulty in recognizing the Amazon's high acoustic diversity and the large amounts of raw audio data recorded by the sensors, the labeling and manual inspection of this data is not feasible. Therefore, we propose an ecoacoustic index that allows us to quantify the complexity of an audio segment and correlate this measure with the biodiversity of the soundscape. The approach uses unsupervised methods to avoid the problem of labeling each species individually. The proposed index, named the Ecoacoustic Global Complexity Index (EGCI), makes use of Entropy, Divergence and Statistical Complexity. A distinguishing feature of this index is the mapping of each audio segment, including those of varied lengths, as a single point in a 2D-plane, supporting us in understanding the ecoacoustic dynamics of the rainforest. The main results show a regularity in the ecoacoustic richness of a floodplain, considering different temporal granularities, be it between hours of the day or between consecutive days of the monitoring program. We observed that this regularity does a good job of characterizing the soundscape of the environmental protection area of Mamirauá, in the Amazon, differentiating between species richness and environmental phenomena.

摘要

自动监测生物多样性的声学传感器已成为评估环境压力的早期阶段不可或缺的工具。由于难以识别亚马逊地区丰富的声学多样性和传感器记录的大量原始音频数据,因此无法对这些数据进行标记和人工检查。因此,我们提出了一个生态声学指数,该指数允许我们量化音频段的复杂性,并将该度量与音景的生物多样性相关联。该方法使用无监督方法来避免逐个标记每个物种的问题。所提出的指数,名为生态声学全局复杂度指数(EGCI),利用熵、散度和统计复杂性。该指数的一个显著特点是,映射每个音频段,包括那些长度不同的音频段,作为 2D 平面中的单个点,支持我们理解雨林的生态声学动态。主要结果表明,在考虑不同的时间粒度(无论是一天中的小时数还是监测计划的连续天数)时,洪泛区的生态声学丰富度存在一定的规律性。我们观察到,这种规律性很好地描述了亚马逊地区 Mamirauá 环境保护区的音景,区分了物种丰富度和环境现象。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验