Suppr超能文献

将纵向生物标志物纳入大数据时代的动态风险预测中:一种伪观测方法。

Incorporating longitudinal biomarkers for dynamic risk prediction in the era of big data: A pseudo-observation approach.

机构信息

Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA.

Department of Internal Medicine/Nephrology, University of Michigan, Ann Arbor, Michigan, USA.

出版信息

Stat Med. 2020 Nov 20;39(26):3685-3699. doi: 10.1002/sim.8687. Epub 2020 Jul 27.

Abstract

Longitudinal biomarker data are often collected in studies, providing important information regarding the probability of an outcome of interest occurring at a future time. With many new and evolving technologies for biomarker discovery, the number of biomarker measurements available for analysis of disease progression has increased dramatically. A large amount of data provides a more complete picture of a patient's disease progression, potentially allowing us to make more accurate and reliable predictions, but the magnitude of available data introduces challenges to most statistical analysts. Existing approaches suffer immensely from the curse of dimensionality. In this article, we propose methods for making dynamic risk predictions using repeatedly measured biomarkers of a large dimension, including cases when the number of biomarkers is close to the sample size. The proposed methods are computationally simple, yet sufficiently flexible to capture complex relationships between longitudinal biomarkers and potentially censored events times. The proposed approaches are evaluated by extensive simulation studies and are further illustrated by an application to a data set from the Nephrotic Syndrome Study Network.

摘要

纵向生物标志物数据通常在研究中收集,提供了有关未来某个时间点感兴趣的结果发生概率的重要信息。随着新的生物标志物发现技术不断发展,用于分析疾病进展的生物标志物测量数量大大增加。大量的数据提供了患者疾病进展更完整的图景,有可能使我们做出更准确和可靠的预测,但可用数据的规模给大多数统计分析师带来了挑战。现有的方法在维数灾难面前受到了极大的影响。在本文中,我们提出了使用大量重复测量的生物标志物进行动态风险预测的方法,包括当生物标志物的数量接近样本量的情况。所提出的方法计算简单,但足够灵活,可以捕捉纵向生物标志物和潜在删失事件时间之间的复杂关系。所提出的方法通过广泛的模拟研究进行评估,并通过对来自肾病综合征研究网络的数据的应用进一步说明。

相似文献

1
Incorporating longitudinal biomarkers for dynamic risk prediction in the era of big data: A pseudo-observation approach.
Stat Med. 2020 Nov 20;39(26):3685-3699. doi: 10.1002/sim.8687. Epub 2020 Jul 27.
2
Random survival forests for dynamic predictions of a time-to-event outcome using a longitudinal biomarker.
BMC Med Res Methodol. 2021 Oct 17;21(1):216. doi: 10.1186/s12874-021-01375-x.
3
On longitudinal prediction with time-to-event outcome: Comparison of modeling options.
Biometrics. 2017 Mar;73(1):83-93. doi: 10.1111/biom.12562. Epub 2016 Jul 20.
4
An R -curve for evaluating the accuracy of dynamic predictions.
Stat Med. 2018 Mar 30;37(7):1125-1133. doi: 10.1002/sim.7571. Epub 2017 Dec 4.
5
A Gaussian copula approach for dynamic prediction of survival with a longitudinal biomarker.
Biostatistics. 2021 Jul 17;22(3):504-521. doi: 10.1093/biostatistics/kxz049.
6
Dynamic prediction of time to a clinical event with sparse and irregularly measured longitudinal biomarkers.
Biom J. 2020 Oct;62(6):1371-1393. doi: 10.1002/bimj.201900112. Epub 2020 Mar 20.
7
Gaussian variational approximate inference for joint models of longitudinal biomarkers and a survival outcome.
Stat Med. 2023 Feb 10;42(3):316-330. doi: 10.1002/sim.9619. Epub 2022 Nov 28.
9
Dynamic predictions using flexible joint models of longitudinal and time-to-event data.
Stat Med. 2017 Apr 30;36(9):1447-1460. doi: 10.1002/sim.7209. Epub 2017 Jan 22.
10
Mean residual life regression with functional principal component analysis on longitudinal data for dynamic prediction.
Biometrics. 2018 Dec;74(4):1482-1491. doi: 10.1111/biom.12876. Epub 2018 Mar 30.

引用本文的文献

2
Developing predictive precision medicine models by exploiting real-world data using machine learning methods.
J Appl Stat. 2024 Feb 13;51(14):2980-3003. doi: 10.1080/02664763.2024.2315451. eCollection 2024.
4
Subphenotypes of platelet count trajectories in sepsis from multi-center ICU data.
Sci Rep. 2024 Aug 30;14(1):20187. doi: 10.1038/s41598-024-71186-9.
6
Dynamic risk prediction of survival in liver cirrhosis: A comparison of landmarking approaches.
PLoS One. 2024 Jul 5;19(7):e0306328. doi: 10.1371/journal.pone.0306328. eCollection 2024.
7
Association of inflammatory trajectory with subarachnoid hemorrhage mortality.
Neurosurg Rev. 2024 Jun 5;47(1):256. doi: 10.1007/s10143-024-02413-0.
8
Pseudo-value regression trees.
Lifetime Data Anal. 2024 Apr;30(2):439-471. doi: 10.1007/s10985-024-09618-x. Epub 2024 Feb 25.
9
Association of longitudinal platelet count trajectory with ICU mortality: A multi-cohort study.
Front Immunol. 2022 Aug 19;13:936662. doi: 10.3389/fimmu.2022.936662. eCollection 2022.

本文引用的文献

2
Joint modelling of time-to-event and multivariate longitudinal outcomes: recent developments and issues.
BMC Med Res Methodol. 2016 Sep 7;16(1):117. doi: 10.1186/s12874-016-0212-5.
3
On longitudinal prediction with time-to-event outcome: Comparison of modeling options.
Biometrics. 2017 Mar;73(1):83-93. doi: 10.1111/biom.12562. Epub 2016 Jul 20.
4
Evaluation of treatment efficacy using a Bayesian mixture piecewise linear model of longitudinal biomarkers.
Stat Med. 2015 May 10;34(10):1733-46. doi: 10.1002/sim.6445. Epub 2015 Jan 29.
6
Bayesian hierarchical model for multiple repeated measures and survival data: an application to Parkinson's disease.
Stat Med. 2014 Oct 30;33(24):4279-91. doi: 10.1002/sim.6228. Epub 2014 Jun 17.
7
A Bayesian approach to joint analysis of multivariate longitudinal data and parametric accelerated failure time.
Stat Med. 2014 Feb 20;33(4):580-94. doi: 10.1002/sim.5956. Epub 2013 Sep 6.
9
Joint modeling of multivariate longitudinal measurements and survival data with applications to Parkinson's disease.
Stat Methods Med Res. 2016 Aug;25(4):1346-58. doi: 10.1177/0962280213480877. Epub 2013 Apr 16.
10
Pseudo-observations for competing risks with covariate dependent censoring.
Lifetime Data Anal. 2014 Apr;20(2):303-15. doi: 10.1007/s10985-013-9247-7. Epub 2013 Feb 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验