Suppr超能文献

用于 H-N 和 H-C 分离局部场实验的计算机生成脉冲序列。

Computer-generated pulse sequences for H-N and H-C separated local-field experiments.

机构信息

Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA.

Department of Chemistry, North Carolina State University, 2620 Yarbrough Drive, Raleigh, NC 27695-8204, USA.

出版信息

J Magn Reson. 2020 Aug;317:106794. doi: 10.1016/j.jmr.2020.106794. Epub 2020 Jul 17.

Abstract

High-resolution separated local field (SLF) experiments are employed in oriented-sample solid state NMR to measure angular-dependent heteronuclear dipolar couplings for structure determination. While traditionally these experiments have been designed analytically by determining cycles of pulses with specific phases and durations to achieve cancellation of the homonuclear dipolar terms in the average Hamiltonian, recent work has introduced a computational approach to optimizing linewidths of the H-N dipolar resonances. Accelerated by GPU processors, a computer algorithm searches for the optimal parameters by simulating numerous H-N NMR spectra. This approach, termed ROULETTE, showed promising results by developing a new pulse sequence (ROULETTE-1.0) exhibiting 18% sharper mean linewidths than SAMPI4 for an N-acetyl Leucine (NAL) crystal. Herein, we expand on this previous work to improve the performance of the H-N SLF experiment and extend the work beyond the original approach to new SLF experiments. The new algorithm, in addition to finding pulse durations and phases, now searches for the optimal on/off application scheme of radio frequency irradiation on each channel. This constitutes true de novo optimization, effectively optimizing every aspect of a pulse sequence instead of just phases and durations. With an improved ROULETTE algorithm, we have found a new H-N pulse sequence, termed ROULETTE-2.0, yielding 32% sharper mean linewidths than SAMPI4 for NAL crystal at 500 MHz H frequency. Whereas both SAMPI4 and ROULETTE-1.0 have a window where the rf power on the I-channel is turned off, the new pulse sequence is entirely windowless. Furthermore, the reliability of the algorithm has been greatly improved in terms of avoiding false positives, i.e. well-performing pulse sequences in silica that fail to render narrow resonances in experiment. The program has been extended to the C-H SLF experiments, using a 6 subdwell architecture similar to the H-N optimization. Compared to the PISEMA pulse sequence, the mean C-H linewidth is 17% sharper for the new pulse sequence, termed ROULETTE-CAHA. In addition to superior performance, the work demonstrates the broad applicability of the algorithm and its adaptability to different NMR experiments and spin systems.

摘要

高分辨率分离局域场 (SLF) 实验被应用于取向样品固态 NMR 中,以测量用于结构确定的各向异性异核偶极耦合。虽然传统上这些实验是通过确定具有特定相位和持续时间的脉冲循环来设计的,以在平均哈密顿量中消除同核偶极项,但最近的工作引入了一种计算方法来优化 H-N 偶极共振的线宽。通过 GPU 处理器加速,计算机算法通过模拟大量 H-NMR 谱来搜索最佳参数。这种方法称为 ROULETTE,通过开发新的脉冲序列(ROULETTE-1.0),与 N-乙酰亮氨酸 (NAL) 晶体的 SAMPI4 相比,显示出 18%更窄的平均线宽,从而取得了有希望的结果。在此,我们扩展了以前的工作,以提高 H-N SLF 实验的性能,并将工作扩展到新的 SLF 实验之外。新算法除了找到脉冲持续时间和相位外,现在还搜索在每个通道上应用射频辐射的最佳开/关应用方案。这构成了真正的从头优化,有效地优化了脉冲序列的各个方面,而不仅仅是相位和持续时间。通过改进的 ROULETTE 算法,我们为 NAL 晶体在 500 MHz H 频率下找到了新的 H-N 脉冲序列,称为 ROULETTE-2.0,与 SAMPI4 相比,平均线宽窄 32%。虽然 SAMPI4 和 ROULETTE-1.0 都有一个 I 通道上的射频功率关闭的窗口,但新的脉冲序列是完全无窗的。此外,在避免误报方面,算法的可靠性大大提高,即硅中的表现良好的脉冲序列在实验中未能产生窄共振。该程序已扩展到 C-H SLF 实验中,使用类似于 H-N 优化的 6 个子停留架构。与 PISEMA 脉冲序列相比,新脉冲序列的平均 C-H 线宽为 17%,称为 ROULETTE-CAHA。除了性能优越外,这项工作还展示了算法的广泛适用性及其对不同 NMR 实验和自旋系统的适应性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验