Suppr超能文献

植物根系离子与水分运输的综合生物物理模型。III. 量化盐胁迫根系中离子运输的能量消耗。

A Comprehensive Biophysical Model of Ion and Water Transport in Plant Roots. III. Quantifying the Energy Costs of Ion Transport in Salt-Stressed Roots of .

作者信息

Foster Kylie J, Miklavcic Stanley J

机构信息

Phenomics and Bioinformatics Research Centre, University of South Australia, Mawson Lakes, WA, Australia.

出版信息

Front Plant Sci. 2020 Jul 3;11:865. doi: 10.3389/fpls.2020.00865. eCollection 2020.

Abstract

Salt stress defense mechanisms in plant roots, such as active Na efflux and storage, require energy in the form of ATP. Understanding the energy required for these transport mechanisms is an important step toward achieving an understanding of salt tolerance. However, accurate measurements of the fluxes required to estimate these energy costs are difficult to achieve by experimental means. As a result, the magnitude of the energy costs of ion transport in salt-stressed roots relative to the available energy is unclear, as are the relative contributions of different defense mechanisms to the total cost. We used mathematical modeling to address three key questions about the energy costs of ion transport in salt-stressed roots: are the energy requirements calculated on the basis of flux data feasible; which transport steps are the main contributors to the total energy costs; and which transport processes could be altered to minimize the total energy costs? Using our biophysical model of ion and water transport we calculated the energy expended in the trans-plasma membrane and trans-tonoplast transport of Na, K, Cl, and H in different regions of a salt-stressed model root. Our calculated energy costs exceeded experimental estimates of the energy supplied by root respiration for high external NaCl concentrations. We found that Na exclusion from, and Cl uptake into, the outer root were the major contributors to the total energy expended. Reducing the leakage of Na and the active uptake of Cl across outer root plasma membranes would lower energy costs while enhancing exclusion of these ions. The high energy cost of ion transport in roots demonstrates that the energetic consequences of altering ion transport processes should be considered when attempting to improve salt tolerance.

摘要

植物根系中的盐胁迫防御机制,如主动排钠和储钠,需要ATP形式的能量。了解这些运输机制所需的能量是迈向理解耐盐性的重要一步。然而,通过实验手段很难准确测量估算这些能量成本所需的通量。因此,盐胁迫根系中离子运输的能量成本相对于可用能量的大小尚不清楚,不同防御机制对总成本的相对贡献也不清楚。我们使用数学建模来解决关于盐胁迫根系中离子运输能量成本的三个关键问题:基于通量数据计算的能量需求是否可行;哪些运输步骤是总能量成本的主要贡献者;以及可以改变哪些运输过程以最小化总能量成本?利用我们的离子和水分运输生物物理模型,我们计算了盐胁迫模型根不同区域中Na、K、Cl和H跨质膜和液泡膜运输所消耗的能量。对于高外部NaCl浓度,我们计算出的能量成本超过了根呼吸提供能量的实验估计值。我们发现,外根排Na和Cl的吸收是总能量消耗的主要贡献者。减少外根质膜上Na的泄漏和Cl的主动吸收将降低能量成本,同时增强这些离子的外排。根系中离子运输的高能量成本表明,在试图提高耐盐性时,应考虑改变离子运输过程的能量后果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a88/7348042/91115027a267/fpls-11-00865-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验