IEEE Trans Cybern. 2022 Apr;52(4):2214-2224. doi: 10.1109/TCYB.2020.2965967. Epub 2022 Apr 5.
In this article, we are concerned with the formation of type-2 information granules in a two-stage approach. We present a comprehensive algorithmic framework which gives rise to information granules of a higher type (type-2, to be specific) such that the key structure of the local granular data, their topologies, and their diversities become fully reflected and quantified. In contrast to traditional collaborative clustering where local structures (information granules) are obtained by running algorithms on the local datasets and communicating findings across sites, we propose a way of characterizing granular data (formed) by forming a suite of higher type information granules to reveal an overall structure of a collection of locally available datasets. Information granules built at the lower level on a basis of local sources of data are weighted by the number of data they represent while the information granules formed at the higher level of hierarchy are more abstract and general, thus facilitating a formation of a hierarchical description of data realized at different levels of detail. The construction of information granules is completed by resorting to fuzzy clustering algorithms (more specifically, the well-known Fuzzy C-Means). In the formation of information granules, we follow the fundamental principle of granular computing, viz., the principle of justifiable granularity. Experimental studies concerning selected publicly available machine-learning datasets are reported.
在本文中,我们关注的是分两阶段形成类型 2 信息粒。我们提出了一个全面的算法框架,该框架产生了更高类型的信息粒(具体来说是类型 2),使得局部粒度数据的关键结构、它们的拓扑结构和多样性得到了充分的反映和量化。与传统的协作聚类不同,在协作聚类中,局部结构(信息粒)是通过在局部数据集上运行算法并在站点之间进行发现交流来获得的,我们提出了一种通过形成一系列更高类型的信息粒来描述粒度数据(形成)的方法,以揭示一组本地可用数据集的整体结构。基于本地数据源形成的较低层次的信息粒通过它们所代表的数据量来加权,而在更高层次的层次结构中形成的信息粒则更加抽象和一般,从而有助于在不同详细程度上实现数据的分层描述。信息粒的构建是通过使用模糊聚类算法(更具体地说是著名的模糊 C-均值)来完成的。在信息粒的形成中,我们遵循颗粒计算的基本原则,即合理粒度的原则。报告了针对选定的公开可用机器学习数据集的实验研究。