Suppr超能文献

使用深度残差神经网络和合成孔径雷达-光学数据融合去除哨兵-2影像中的云。

Cloud removal in Sentinel-2 imagery using a deep residual neural network and SAR-optical data fusion.

作者信息

Meraner Andrea, Ebel Patrick, Zhu Xiao Xiang, Schmitt Michael

机构信息

Signal Processing in Earth Observation, Technical University of Munich, Arcisstraße 21, 80333 Munich, Germany.

Remote Sensing Technology Institute, German Aerospace Center (DLR), Münchener Straße 20, 82234 Weßling-Oberpfaffenhofen, Germany.

出版信息

ISPRS J Photogramm Remote Sens. 2020 Aug;166:333-346. doi: 10.1016/j.isprsjprs.2020.05.013.

Abstract

Optical remote sensing imagery is at the core of many Earth observation activities. The regular, consistent and global-scale nature of the satellite data is exploited in many applications, such as cropland monitoring, climate change assessment, land-cover and land-use classification, and disaster assessment. However, one main problem severely affects the temporal and spatial availability of surface observations, namely cloud cover. The task of removing clouds from optical images has been subject of studies since decades. The advent of the Big Data era in satellite remote sensing opens new possibilities for tackling the problem using powerful data-driven deep learning methods. In this paper, a deep residual neural network architecture is designed to remove clouds from multispectral Sentinel-2 imagery. SAR-optical data fusion is used to exploit the synergistic properties of the two imaging systems to guide the image reconstruction. Additionally, a novel cloud-adaptive loss is proposed to maximize the retainment of original information. The network is trained and tested on a globally sampled dataset comprising real cloudy and cloud-free images. The proposed setup allows to remove even optically thick clouds by reconstructing an optical representation of the underlying land surface structure.

摘要

光学遥感图像是许多地球观测活动的核心。卫星数据的规律性、一致性和全球尺度特性在许多应用中得到了利用,如农田监测、气候变化评估、土地覆盖和土地利用分类以及灾害评估。然而,一个主要问题严重影响了地表观测的时空可用性,即云层覆盖。几十年来,从光学图像中去除云层的任务一直是研究的主题。卫星遥感大数据时代的到来为使用强大的数据驱动深度学习方法解决该问题开辟了新的可能性。在本文中,设计了一种深度残差神经网络架构,用于从多光谱哨兵 -2 图像中去除云层。合成孔径雷达(SAR)与光学数据融合被用于利用这两种成像系统的协同特性来指导图像重建。此外,还提出了一种新颖的云自适应损失,以最大限度地保留原始信息。该网络在一个包含真实多云和无云图像的全球采样数据集上进行训练和测试。所提出的设置允许通过重建底层陆地表面结构的光学表示来去除甚至光学厚度较大的云层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e54/7386944/cdc07c9be2f8/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验