Suppr超能文献

如何用更少的负担提取更多信息:带有眼科医生干预的眼底图像分类和视网膜疾病定位。

How to Extract More Information With Less Burden: Fundus Image Classification and Retinal Disease Localization With Ophthalmologist Intervention.

出版信息

IEEE J Biomed Health Inform. 2020 Dec;24(12):3351-3361. doi: 10.1109/JBHI.2020.3011805. Epub 2020 Dec 4.

Abstract

Image classification using convolutional neural networks (CNNs) outperforms other state-of-the-art methods. Moreover, attention can be visualized as a heatmap to improve the explainability of results of a CNN. We designed a framework that can generate heatmaps reflecting lesion regions precisely. We generated initial heatmaps by using a gradient-based classification activation map (Grad-CAM). We assume that these Grad-CAM heatmaps correctly reveal the lesion regions; then we apply the attention mining technique to these heatmaps to obtain integrated heatmaps. Moreover, we assume that these Grad-CAM heatmaps incorrectly reveal the lesion regions and design a dissimilarity loss to increase their discrepancy with the Grad-CAM heatmaps. In this study, we found that having professional ophthalmologists select 30% of the heatmaps covering the lesion regions led to better results, because this step integrates (prior) clinical knowledge into the system. Furthermore, we design a knowledge preservation loss that minimizes the discrepancy between heatmaps generated from the updated CNN model and the selected heatmaps. Experiments using fundus images revealed that our method improved classification accuracy and generated attention regions closer to the ground truth lesion regions in comparison with existing methods.

摘要

使用卷积神经网络 (CNN) 的图像分类优于其他最先进的方法。此外,可以将注意力可视化为热图,以提高 CNN 结果的可解释性。我们设计了一个可以生成精确反映病变区域的热图的框架。我们通过使用基于梯度的分类激活图 (Grad-CAM) 生成初始热图。我们假设这些 Grad-CAM 热图正确地揭示了病变区域;然后,我们将注意力挖掘技术应用于这些热图,以获得综合热图。此外,我们假设这些 Grad-CAM 热图错误地揭示了病变区域,并设计了一个不相似性损失,以增加它们与 Grad-CAM 热图的差异。在这项研究中,我们发现让专业的眼科医生选择覆盖病变区域的 30%的热图可以得到更好的结果,因为这一步将(先验)临床知识集成到系统中。此外,我们设计了一种知识保留损失,该损失可以最小化从更新的 CNN 模型生成的热图与所选热图之间的差异。使用眼底图像进行的实验表明,与现有方法相比,我们的方法提高了分类精度,并生成了更接近真实病变区域的注意力区域。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验