Department of Pharmacology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
IRCCS, Neuromed, 86077 Pozzilli, Italy.
Int J Mol Sci. 2020 Jul 30;21(15):5412. doi: 10.3390/ijms21155412.
Mitochondrial dysfunction is crucially involved in aging and neurodegenerative diseases, such as Huntington's Disease (HD). How mitochondria become compromised in HD is poorly understood but instrumental for the development of treatments to prevent or reverse resulting deficits. In this paper, we investigate whether oxidative phosphorylation (OXPHOS) differs across brain regions in juvenile as compared to adult mice and whether such developmental changes might be compromised in the R6/2 mouse model of HD. We study OXPHOS in the striatum, hippocampus, and motor cortex by high resolution respirometry in female wild-type and R6/2 mice of ages corresponding to pre-symptomatic and symptomatic R6/2 mice. We observe a developmental shift in OXPHOS-control parameters that was similar in R6/2 mice, except for cortical succinate-driven respiration. While the LEAK state relative to maximal respiratory capacity was reduced in adult mice in all analyzed brain regions, succinate-driven respiration was reduced only in the striatum and cortex, and NADH-driven respiration was higher as compared to juvenile mice only in the striatum. We demonstrate age-related changes in respirational capacities of different brain regions with subtle deviations in R6/2 mice. Uncovering in situ oxygen conditions and potential substrate limitations during aging and HD disease progression are interesting avenues for future research to understand brain-regional vulnerability in HD.
线粒体功能障碍与衰老和神经退行性疾病(如亨廷顿病)密切相关。线粒体在亨廷顿病中如何受损仍不清楚,但对于开发预防或逆转由此产生的缺陷的治疗方法至关重要。在本文中,我们研究了与成年小鼠相比,氧化磷酸化(OXPHOS)在幼年小鼠的不同脑区是否存在差异,以及这种发育变化是否可能在亨廷顿病的 R6/2 小鼠模型中受到影响。我们通过高分辨率呼吸测量法研究了野生型和 R6/2 小鼠纹状体、海马体和运动皮层中的 OXPHOS,这些 R6/2 小鼠的年龄对应于 R6/2 小鼠的无症状和有症状期。我们观察到 OXPHOS 控制参数的发育性转变,R6/2 小鼠中也存在这种转变,但皮质琥珀酸驱动的呼吸除外。虽然在所有分析的脑区中,成年小鼠的 LEAK 状态相对于最大呼吸能力都降低了,但只有在纹状体和皮质中,琥珀酸驱动的呼吸才降低,而只有在纹状体中,NADH 驱动的呼吸才比幼年小鼠更高。我们证明了不同脑区呼吸能力随年龄的变化,R6/2 小鼠中存在细微偏差。揭示衰老和亨廷顿病疾病进展过程中的原位氧条件和潜在的底物限制是未来研究理解亨廷顿病中大脑区域易损性的有趣途径。