Suppr超能文献

用于深垂直线阵列的匹配波束强度处理。

Matched beam-intensity processing for a deep vertical line array.

作者信息

Zheng Guangying, Yang T C, Ma Qiming, Du Shuanping

机构信息

Science and Technology on Sonar Laboratory, Hangzhou Applied Acoustics Research Institute, Hangzhou 310023, China.

College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China.

出版信息

J Acoust Soc Am. 2020 Jul;148(1):347. doi: 10.1121/10.0001583.

Abstract

A vertical line array can be deployed in deep water below the critical depth, the depth where the sound speed equals the sound speed at the surface, to take advantage of the lower ambient noise level (compared with above the critical depth) for target detection. To differentiate a submerged source from a surface source, a Fourier transform based method [McCargar and Zurk, J. Acoust. Soc. Am. 133, EL320-325 (2013)] was proposed for a narrowband signal that exploits the depth-related harmonic (oscillation) feature of the beam power time series associated with the target arrival. In this paper, incoherent matched beam processing is used to estimate the target depth. Where the replica (calculated) beam intensity or amplitude time series best matches that of the data is used to estimate the source depth. This method is shown, based on simulated data, to provide a better depth resolution in general and better ability to estimate the depth of a very shallow source (say at 10 m) and can be used to complement the Fourier transform based method. It can be extended to process (random) broadband signals and to environments where the Lloyd's mirror theory is not valid.

摘要

垂直线列阵可以部署在临界深度以下的深水中(临界深度是指声速等于水面声速的深度),以利用较低的环境噪声水平(与临界深度以上相比)进行目标探测。为了区分水下声源和水面声源,针对窄带信号提出了一种基于傅里叶变换的方法[麦卡加和祖尔克,《美国声学学会杂志》133,EL320 - 325(2013)],该方法利用了与目标到达相关的波束功率时间序列的深度相关谐波(振荡)特征。在本文中,采用非相干匹配波束处理来估计目标深度。通过计算得到的复制品波束强度或幅度时间序列与数据的最佳匹配位置来估计声源深度。基于模拟数据表明,该方法总体上能提供更好的深度分辨率,并且对极浅声源(比如在10米处)的深度估计能力更强,可用于补充基于傅里叶变换的方法。它可以扩展到处理(随机)宽带信号以及劳埃德镜理论不适用的环境。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验