School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Beihai Ecology and Environment Agency, Beihai, Guangxi 536000, China.
Sci Total Environ. 2020 Nov 20;744:140825. doi: 10.1016/j.scitotenv.2020.140825. Epub 2020 Jul 12.
In China, the corresponding control directives for volatile organic compounds (VOCs) have been based on primary emissions, rarely considering reactive speciation. To seek more effective VOCs control strategies, we investigated 107 VOC species in a typical coastal city (Beihai) of South China, from August to November 2018. Meanwhile, a high-resolution anthropogenic VOCs monthly emission inventory (EI) was established for 2018. For source apportionments (SAs) reliability, comparisons of source structures derived from positive matrix factorization (PMF) and EI were made mainly in terms of reaction losses, uncertainties and specific ratios. Finally, for the source-end control, a comprehensive reactivity control index (RCI) was established by combing SAs with reactive speciation profiles. Ambient measurements showed that the average concentration of VOCs was 26.38 ppbv, dominated by alkanes (36.7%) and oxygenated volatile organic compounds (OVOCs) (29.4%). VOC reactivity was estimated using ozone formation potential (52.35 ppbv) and propylene-equivalent concentration (4.22 ppbv). EI results displayed that the entire VOC, OFP, and propylene-equivalent emissions were 40.98 Gg, 67.98 Gg, and 105.93 Gg, respectively. Comparisons of source structures indicated that VOC SAs agreed within ±100% between two perspectives. Both PMF and EI results showed that petrochemical industry (24.0% and 33.0%), food processing and associated combustion (19.1% and 29.2%) were the significant contributors of anthropogenic VOCs, followed by other industrial processes (22.2% and 13.3%), transportation (18.9% and 12.0%), and solvent utilization (9.1% and10.5%). Aimed at VOCs abatement according to RCI: for terminal control, fifteen ambient highly reactive species (predominantly alkenes and alkanes) were targeted; for source control, the predominant anthropogenic sources (food industry, solvent usage, petrochemical industry and transportation) and their emitted highly reactive species were determined. Particularly, with low levels of ambient VOC and primary emissions, in this VOC and NOx double-controlled regime, crude disorganized emission from food industry contributed a high RCI.
在中国,挥发性有机化合物 (VOCs) 的相应控制指令主要基于一次排放,很少考虑反应形态。为了寻求更有效的 VOCs 控制策略,我们于 2018 年 8 月至 11 月在华南一个典型沿海城市(北海)调查了 107 种 VOC 物种。同时,建立了 2018 年高分辨率人为 VOCs 月度排放清单 (EI)。为了评估源分配 (SA) 的可靠性,主要从反应损耗、不确定性和特定比值等方面比较了正定矩阵因子分解 (PMF) 和 EI 得出的源结构。最后,为了从源端进行控制,通过结合 SA 和反应形态分布,建立了综合反应性控制指数 (RCI)。环境测量表明,VOCs 的平均浓度为 26.38 ppbv,主要由烷烃 (36.7%) 和含氧挥发性有机化合物 (OVOCs) (29.4%) 组成。使用臭氧形成潜力 (52.35 ppbv) 和丙烯当量浓度 (4.22 ppbv) 估算 VOC 反应性。EI 结果显示,整个 VOC、OFP 和丙烯当量排放分别为 40.98 Gg、67.98 Gg 和 105.93 Gg。源结构的比较表明,两种观点下的 VOC SA 一致度在±100%范围内。PMF 和 EI 结果均表明,石化工业 (24.0%和 33.0%)、食品加工及相关燃烧 (19.1%和 29.2%) 是人为 VOC 的重要贡献者,其次是其他工业过程 (22.2%和 13.3%)、交通 (18.9%和 12.0%) 和溶剂使用 (9.1%和 10.5%)。根据 RCI 提出 VOC 减排措施:对于末端控制,以 15 种环境中高反应性物种(主要为烯烃和烷烃)为目标;对于源控制,确定主要人为源(食品工业、溶剂使用、石化工业和交通)及其排放的高反应性物种。特别是在 VOC 和 NOx 双控的情况下,在 VOC 和 NOx 双控的情况下,食品工业低水平的环境 VOC 和初级排放造成了高的 RCI。